
Journal of Theoretical Biology 561 (2023) 111414

A
0
n

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

The effect of bottleneck size on evolution in nested Darwinian populations
Matthew C. Nitschke a,∗, Andrew J. Black b, Pierrick Bourrat c,d, Paul B. Rainey e,f

a School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
b School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
c Philosophy Department, Macquarie University, NSW 2109, Australia
d Department of Philosophy and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
e Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
f Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France

A R T I C L E I N F O

Keywords:
Ecological scaffolding
Stochastic model
Evolutionary transition in individuality
Major transition

A B S T R A C T

Previous work has shown how a minimal ecological structure consisting of patchily distributed resources and
recurrent dispersal between patches can scaffold Darwinian properties onto collections of cells. When the
timescale of dispersal is long compared with the time to consume resources, patch fitness increases but comes
at a cost to cell growth rates. This creates conditions that initiate evolutionary transitions in individuality. A
key feature of the scaffold is a bottleneck created during dispersal, causing patches to be founded by single
cells. The bottleneck decreases competition within patches and, hence, creates a strong hereditary link at the
level of patches. Here, we construct a fully stochastic model to investigate the effect of bottleneck size on the
evolutionary dynamics of both cells and collectives. We show that larger bottlenecks simply slow the dynamics,
but, at some point, which depends on the parameters of the within-patch model, the direction of evolution
towards the equilibrium reverses. Introduction of random fluctuations in bottleneck sizes with some positive
probability of smaller sizes counteracts this, even when the probability of smaller bottlenecks is minimal.
1. Introduction

The biological world is a hierarchy of nested Darwinian popula-
tions, constructed through a series of major evolutionary transitions
in individuality (ETIs) (Maynard Smith and Szathmáry, 1995; Calcott
and Sterelny, 2012; Bourrat, 2019). How processes at one level affect
others, both higher and lower, and the level at which selection acts are
questions that have long occupied biologists (Lewontin, 1970; Damuth
and Heisler, 1988; Sober and Wilson, 1998; Keller, 1999; Michod,
1999; Griesemer, 2000; Rainey et al., 2017; Herron et al., 2022) and
philosophers (Okasha, 2008; Bouchard and Huneman, 2013; Clarke,
2014; Bourrat, 2021) alike. The evolution of new levels in the hierarchy
poses a particular problem as a mechanistic model must explain the
emergence of Darwinian properties themselves and not simply assume
their existence (Griesemer, 2000; Okasha, 2008; Rainey and Kerr,
2010; Rainey et al., 2017). Recent work has drawn attention to the
possibility that particular ecological conditions can exogenously impose
Darwinian-like properties on collectives, leading those entities (e.g.,
collectives of cells) to initiate a process of evolution by natural selection
in its own right at that level. The idea, referred to as ecological scaffold-
ing, is supported by both experimental (Hammerschmidt et al., 2014;
Rose et al., 2020) and theoretical (Black et al., 2020; Doulcier et al.,
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2020; Rainey, 2023) studies, which guide the model we investigate
here.

A basic description of the model of ecological scaffolding is as
follows. Consider a population of cells where the resources needed for
reproduction are divided into discrete patches. Multiple patches ensure
patch-level discreteness and variation. Cell reproduction consumes re-
sources, and so periodic dispersal is required for long-term persistence.
The dispersal process involves passage through a restrictive bottleneck
with newly established patches being the offspring of parental patches.
Cells are Darwinian by their inherent properties and manifest variation
in fitness (Lewontin, 1970; Godfrey-Smith, 2009). However, by virtue
of ecological conditions (patchily distributed resources and a means of
dispersal), patches also have a Darwinian-like character: patches vary
one to another, reproduce (via dispersal), and offspring patches resem-
ble parental patches (Black et al., 2020). Host-pathogen systems are
another canonical example of ecologically scaffolded populations, with
hosts corresponding to patches and transmission leading to dispersal
and colonisation of new hosts being akin to a patch-level reproduction
event (Gilchrist et al., 2002; André and Gandon, 2006; Coombs et al.,
2007; Lythgoe et al., 2013). Black et al. (2020) point to two additional
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target systems for which the ecological scaffolding model might be rele-
vant. This includes the emergence of life and, in particular, its potential
inception in alkaline thermal vents, and the top-down engineering of
microbial communities into a single symbiotic entity.

When the period between dispersal events is long compared with
the time for cells to consume resources, the composition of patches
evolves such that patch fitness increases (larger patches at the time
of dispersal are more likely to be the source of dispersing cells), but
this leads to an apparent paradox: over the short term, cells that grow
more slowly than the founding cells have an advantage because slower
growing cells consume resources less rapidly. This tradeoff between
improving patch (group) fitness and decreasing cell growth rate has
been interpreted through the lens of fitness decoupling (Michod and
Roze, 1999; Michod and Nedelcu, 2003; Okasha, 2005, 2008; Rainey
and De Monte, 2014; Hammerschmidt et al., 2014), alluding to the
fact that after an ETI, the fitness of the higher-level construct (the
patch) is no longer a simple function of the fitness of the individual
components (the cells). However, the underlying assumptions of the
notion of fitness decoupling and related terms such as ‘‘fitness transfer’’
or ‘‘export of fitness’’ have been called into question (Doulcier et al.,
2022). In particular, it has been shown that properly measured—that is,
measured over the same set of events—the fitness of cells and patches
are always equal (Shelton and Michod, 2014; Bourrat, 2015b,a; Black
et al., 2020). It has also been shown that, with the addition of a few
assumptions, collectives under this framework can become resistant to
the scaffolding being removed, thus resulting in a genuine ETI (Bourrat,
2023). Moving on from the fitness-decoupling concept, the dynamics
observed during an ETI have been interpreted in the context of a more
general model involving tradeoff-breaking events (Bourrat et al., 2022).

A key to the model described so far is the bottleneck created by the
dispersal process. Bottlenecks are a well-studied and important aspect
of many developmental and evolutionary processes (Nei et al., 1975;
Geoghegan et al., 2016; Grosberg and Strathmann, 2007; Melbinger
et al., 2015; Kariuki et al., 2017; McCrone and Lauring, 2018). For
example, there is a bottleneck created through the transmission of
pathogens between hosts, and a bottleneck during multicellular repro-
duction. In the model described by Black et al. (2020), patches are
founded by single cells, so competition within patches is reduced (as
all cells are related); hence, the composition of a patch is similar to the
parent patch from which the colonising cell is dispersed. This creates
a high fidelity of transmission at the level of patches (high correlation
between parent and offspring phenotype), hence facilitating a strong
evolutionary response to selection at the higher level. This naturally
generates questions about the sensitivity of the ensuing evolutionary
dynamics to bottleneck size. Providing answers promises to shed light
on the importance of restrictive bottlenecks at the time of group-level
reproduction and subsequent impacts on ETIs.

In this paper, we construct a stochastic model of nested Darwinian
populations and use this to explore how the number of cells that found
new patches affects the evolutionary dynamics of both cell and patch
populations. Our model has the advantage of being mechanistic, so the
causes of different macroscopic dynamics can be transparently related
back to the constituent parts of the system and their interactions.
We concentrate our investigation on the regime where the length of
time between dispersal events is long, where increased patch size is
generated at the expense of cell growth rate, generating a tension for
the maintenance of the collective level.

We show that for bottlenecks bigger than one but still small, the
evolutionary process that is induced by our ecology is slowed in its ap-
proach to the equilibrium but is otherwise similar to a strict single-cell
bottleneck. After a point, the effect of increased short-term competition
within patches founded by multiple cells can overwhelm selection gen-
erated by the dispersal process at the level of patches (over the longer
term), and the direction of evolution from faster to slower growth rates
is reversed. When the size of the bottleneck is changed from being
fixed to a random variable with a distribution over possible sizes, we
see lower-level or short-term selection curtailed to some extent and
the evolutionary equilibrium restored as long as there is a positive
2

probability that some patches will be founded by few cells. b
Fig. 1. Overview of the model and dynamics over a single generation for a population
of 𝑀 = 5 patches. Each patch is colonised by a small number of cells at 𝑡 = 0. A birth–
death-mutation process then takes place (within-patch dynamics) over an interval of
time [0, 𝑇 ]; different colours represent the growth rates of different cell types that have
istinct growth rates. The pie charts represent the total population of each of the 𝑀

patches at dispersal. The size of slices in the pie charts represents the percentage of
each type in the population and the overall size of the pies indicates the total relative
population of the patch. After the growth phase, a dispersal event populates a fresh
set of patches and, in doing so, creates a bottleneck, which (in this example) is a fixed
size of two.

2. Model

Fig. 1 shows an overview of the model. The model consists of a
fixed population of 𝑀 patches, where each patch is initially seeded with
ome (small) number of cells. Cells replicate and mutate independently
ithin each patch, but limited resources for growth, and the build-up
f waste products, eventually lead to cell death becoming dominant;
hus, population size declines. Therefore, long-term persistence requires
ispersal of cells into fresh patches with replenished resources. We
ssume that this dispersal process occurs at a fixed frequency of period
. The dynamics of the model then proceed in discrete generations

such as in a Wright–Fisher model (Blythe and McKane, 2007)), where
single generation consists of a growth phase followed by a dispersal

hase.
Dispersal events also create bottlenecks in the process; hence, each

ew patch is only colonised by a small number of cells. Dispersal is
mplemented as a random process such that larger patches (patches
ith a larger population of cells) are more likely to seed new patches.
hus, selection at the level of patches or over the long timescale favours
atches comprised of many cells. Details of the two parts of the model,
ithin-patch growth and dispersal, are given in the following sections.

.1. Within-patch model

This part of the model describes the birth, death and mutation of
ells within a patch. Each patch initially contains resources that cells
onsume to reproduce. In reproducing, cells also create a waste by-
roduct, with its accumulation contributing to the death rate of cells
ithin each patch. To model these dynamics, we take an individual-
ased approach where we specify the states of the cells, the possible
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Table 1
Events, transitions, rates and propensity functions that define the within-patch model.
Only components of the state that change in a given transition are shown; all other
components are fixed.

Event Transition Rate

replication (𝐴𝑖 , 𝐷, 𝐸) → (𝐴𝑖 + 1, 𝐷 + 𝑟 − 1, 𝐸 − 𝑟) (1 − 𝑝)𝑉 −1𝛽𝑖𝐴𝑖𝐸
mutation↑ (𝐴𝑖 , 𝐷, 𝐸) → (𝐴𝑖+1 + 1, 𝐷 + 𝑟 − 1, 𝐸 − 𝑟) 𝑝(1 − 𝑞)𝑉 −1𝛽𝑖𝐴𝑖𝐸
mutation↓ (𝐴𝑖 , 𝐷, 𝐸) → (𝐴𝑖−1 + 1, 𝐷 + 𝑟 − 1, 𝐸 − 𝑟) 𝑝𝑞𝑉 −1𝛽𝑖𝐴𝑖𝐸
death 𝐴𝑖 → 𝐴𝑖 − 1 𝑉 −1𝐴𝑖𝐷

events and their rates (Black and McKane, 2012). The overall popu-
lations of cells, waste and resource within the patch at a given time
are then specified by a continuous-time Markov chain (CTMC) (Black
and McKane, 2012; Wilkinson, 2018). This implicitly assumes that the
resource and waste are consumed and produced in discrete units. All
quantities described below are relative to a single patch.

Cells are labelled according to their type, 𝑖 = 1,… , 𝑛, where 𝑛 is
the maximum number of types tracked by the model. Cell types are
distinguishable only by their growth rates, 𝛽𝑖; hence, we denote by 𝐴𝑖(𝑡)
he number of cells of type 𝑖 at time 𝑡. Similarly, we define 𝐷(𝑡) and 𝐸(𝑡)
s the amount of waste and resource within each patch, respectively.
he state of the system is then specified by the vector

(𝑡) = (𝐷(𝑡), 𝐸(𝑡),𝐀(𝑡)) , (1)

here 𝐀(𝑡) is a vector with elements 𝐴𝑖(𝑡). To reproduce, cells pass
hrough a cycle during which they consume 𝑟 units of resource and
roduce 𝑟 − 1 units of waste. The choice of 𝑟 only affects the rate at
hich the resources are consumed, but the dynamics can be adjusted
y scaling the initial resource, 𝐸(0) = 𝑉 ≫ 1, to give similar growth
rajectories regardless of 𝑟. Herein, we set 𝑟 = 4 and 𝑉 = 106.

Growth rates are discretised with mutation step size 𝜇, where the
rowth rate of the 𝑖th type is defined as

𝑖 = 𝛽1 + 𝜇(𝑖 − 1) 𝑖 ≥ 1 , (2)

here 𝛽1 is the growth rate of the slowest growing type that is tracked
y the model. Thus, the growth rate of type 𝑖 + 1 is greater than
he growth rate of type 𝑖, and this ordering carries through to all
lements of 𝐀(𝑡). At each reproduction event, with probability 𝑝, instead
f replicating to produce another cell of the same type, a mutation
ccurs to produce a cell of a different type. Mutations are modelled
y changing the growth rate of the daughter cell by a single step
ither up or down. So, if a mutation occurs to the daughter of a type
cell, with probability 𝑞, the mutant will have a lower growth rate
𝐴𝑖−1 → 𝐴𝑖−1 + 1); otherwise, with probability 1 − 𝑞, it is higher
𝐴𝑖+1 → 𝐴𝑖+1 + 1). Thus, 𝑝 controls the overall probability of mutations
elative to replication, and 𝑞 controls the symmetry of the process. This
onstruction is similar to models of quasi-species (Eigen and Schuster,
971; Nowak, 2006) but with a one-dimensional fitness landscape.

Within each patch, we assume homogeneous mixing; hence, the
ates of events follow a mass action law that scales with the volume,

(van Kampen, 1992; Gillespie, 1977). The total rate of reproduction
including creating mutants) for type 𝑖 is 𝑉 −1𝛽𝑖𝐴𝑖𝐸, the product of the
bundance of the cells, 𝐴𝑖, the resource, 𝐸, and the growth rate, 𝛽𝑖,
ivided by the volume. The rate at which cells of type 𝑖 die is 𝑉 −1𝐴𝑖𝐷.
ence, the mean lifetime of a cell decreases as the amount of waste
uilds up in the patch, and all cells die at the same rate, independent of
heir type/growth rate. The events, transitions and rates for the model
re summarised in Table 1.

Initial conditions for this process are

(0) =
(

0, 𝑉 , ⟨𝑎1,… , 𝑎𝑛⟩
)

, (3)

here 𝑎𝑖 is the initial number of cell type 𝑖 that colonise the patch,
hich is determined at the previous dispersal step. In specifying the

nitial conditions of patches, it is often simpler to label cell types by
3

heir growth rates rather than integers, where the mapping between S
ype 𝑖 and its growth rate 𝛽𝑖 is given by Eq. (2). The initial condition
or a patch with a bottleneck of size 𝑏 can then be defined as a
ultiset (Knuth, 1997),

̄ = {𝑥1, 𝑥2,… , 𝑥𝑏}, (4)

where 𝑥𝑖 ∈ {𝛽1,… , 𝛽𝑛}. For example, {2.0, 2.0, 1.9} means a patch is
nitially colonised by two cells with growth rate 2.0 and one with rate
.9. This can also be written more compactly as {2.02, 1.9}.

.2. Reordered state vector model

The model described above is a CTMC; hence, trajectories can
e simulated using the Gillespie (1977) algorithm, which generates
xact sample paths of the process, or tau-leaping (Gillespie, 2001),
hich is a faster but approximate approach. Although, in theory, these
lgorithms can accommodate an infinite number of types, to make
hem computationally efficient, we truncate the state space—that is, set
1, the slowest growth rate tracked, and 𝑛, the total number of types
racked. These must be carefully chosen to avoid truncating the state
pace to too small a region, and it is not possible to do this a priori as
he mean growth rate will evolve over generations of the model. Setting
too large affects the computational efficiency, which is important as

he within-patch model must be run 𝑀 times per generation for a large
umber of generations.

As will be demonstrated later, simulations of the model reveal that
ithin a single patch, it is only necessary to track a small range of
rowth rates, and the growth rates of the initial cells tend to be tightly
lustered around a single value, even for much larger bottleneck sizes.
his motivates the construction of a reordered state vector that takes
dvantage of the particular dynamics of our system and allows for a
ore efficient simulation algorithm. We now define the growth rate of

he 𝓁th type as

𝓁 =

{

𝛽𝑘 −
𝜇
2 (𝓁 − 1), if 𝓁 is odd

𝛽𝑘 +
𝜇
2 𝓁, if 𝓁 is even

𝓁 ≥ 1 , (5)

where 𝛽𝑘 is chosen dynamically when the initial condition is set. This
s chosen to correspond to the most populous cell type of the initial
ells, which, due to the dynamics of the model, is usually close to the
ean growth rate taken over the initial cells. If some cell numbers are

qually populous, it is set to the fastest growth rate of this set.
This reordering essentially ‘‘folds’’ the state vector about 𝛽𝑘 so that

he bulk of the non-zero elements of 𝐀(𝑡) remain in the first few entries
f the vector. Similar ideas for reordering the state space to increase
imulation efficiency have been proposed for a more general class of
odels (Cao et al., 2004; McCollum et al., 2006). The state space is still

runcated by choosing a maximum value of 𝑙 and altering the transition
robabilities of the fastest and slowest types. Even with dynamically
pdating 𝛽𝑘, truncation means that it is still possible for initial cell
rowth rates to fall outside the tracked range. If this happens, these
ells are simply removed from the patch. This is an approximation;
owever, in practice, it works well as these cells are typically neither
umerous nor close to the mean growth rate of the remaining cells and,
ence, have a small impact on overall within-patch dynamics. Herein,
is set at 23, which was found to be large enough, even for larger
ottlenecks, such that truncation was rarely enforced.

Although the exact stochastic simulation algorithm is straightfor-
ard to implement, reactions occur frequently, which still makes the
SA impractically slow for large patch sizes. For this reason, the model
s simulated using the standard tau-leaping algorithm (Gillespie, 2001),
ith interval of length 𝜏 = 0.1. This length is suitable as it retains

he qualitative nature of the exact results—that is, the general shape
f the distribution of the total patch population at dispersal remains
he same with this length of 𝜏 but results in an algorithm that is more
han 100 times faster than the SSA. More mathematical details of the
eordering of the state vector and simulation algorithm are given in the
upplementary Material.
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2.3. Dispersal

The second part of the model is a dispersal process that populates a
new generation of patches and, hence, determines the initial conditions
for the within-patch model. Sampling cells without replacement from
the total population, aggregated over all patches, gives rise to between-
patch selection as larger patches at the time of dispersal are more likely
to contribute to the total cell population and, hence, seed future gen-
erations of patches. As the number of cells in a patch is typically large,
we can instead approximate this by a two-stage process involving just
sampling with replacement, which is computationally much cheaper.

To specify the sampling process, we first define the matrix 𝛺, where
each element 𝛺𝑖𝑗 is the number of cells of type 𝑖 in patch 𝑗 at the
time of dispersal, 𝑇 . Thus, the total number of cells (of all types) in
patch 𝑗 is given by ∑𝑛

𝑖=1 𝛺𝑖𝑗 . The dispersal process is simulated in two
stages: first, 𝑀 patches are sampled with replacement with probability
in proportion to the total number of cells in the patch (i.e., the size of
the patch),

(𝜋1, 𝜋2,… , 𝜋𝑀 ) ∼ Multinomial(𝑀,𝐩), (6)

where the probability of sampling patch 𝑗 is

𝑝𝑗 =
∑𝑛

𝑖=1 𝛺𝑖𝑗
∑𝑀

𝑗=1
∑𝑛

𝑖=1 𝛺𝑖𝑗
, 𝑗 = 1,… ,𝑀. (7)

Next, we sample a bottleneck size, 𝑏𝑗 , and, hence, the number of cells
to be sampled from each patch 𝜋𝑗 as

𝑏𝑗 ∼ Categorical(𝑓 ) , 𝑗 = 1,… ,𝑀, (8)

where 𝑓 is the distribution over possible sizes. In many cases, we take
this distribution to be a delta function, 𝑓𝑖 = 𝛿𝑖,𝐵 , so the bottleneck is of
a deterministic size 𝐵.

Finally, to determine the initial conditions for the patches in the
next generation, we sample 𝑏𝑗 cells from patch 𝜋𝑗 in proportion to the
overall number within the patch

(𝑎1,… , 𝑎𝑏𝑗 ) ∼ Multinomial(𝑏𝑗 , �̄�), (9)

where �̄� has elements

�̄�𝑖 =
𝛺𝑖𝜋𝑗

∑𝑛
𝑖=1 𝛺𝑖𝜋𝑗

, 𝑖 = 1,… , 𝑛. (10)

his procedure means that where the bottleneck is greater than one, all
ells dispersed into a new patch come from the same parent patch.

.4. Measuring evolutionary dynamics

We define a number of quantities that are useful in measuring the
volutionary dynamics of the system. The average cell growth rate
ithin a patch at a given time 𝑡 from the start of growth within that
atch is calculated as

̂(𝑡) =
∑𝑛

𝑖=1 𝛽𝑖𝐴𝑖(𝑡)
∑𝑛

𝑖=1 𝐴𝑖(𝑡)
. (11)

By tracking 𝛽 over growth and dispersal phases, it is possible to
quantify the strength of selection at both levels of the model induced
by competition and dispersal processes, respectively.

It is also informative to look at how different forces of selection
evolve over generations of the model. This is done by examining how
the average cell growth rate (defined in Eq. (11)) changes over the two
phases that comprise a single generation of the model: patch growth
and dispersal. The relative change in the average growth rate within a
single patch in generation 𝑘 is calculated as

𝛥𝑤 =
𝛽𝑘(𝑇 ) − 𝛽𝑘(0) . (12)
4

𝛽𝑘(0)
As defined, it is expected that this will be positive for our model because
faster growing cells out-compete slower growing cells within a patch,
but only to a minor extent. The second quantity,

𝛥𝑏 =
𝛽𝑘+1(0) − 𝛽𝑘(𝑇 )

𝛽𝑘(𝑇 )
, (13)

s the relative change in the mean cell growth rate between a given
arent and offspring patch. The term 𝛽𝑘+1(0) is the average cell growth
ate within a patch after dispersal has taken place. On average, we
xpect this to be smaller than the growth rate within a patch imme-
iately before dispersal, 𝛽𝑘(𝑇 ), since dispersal favours slower growing
ells. As defined, this means 𝛥𝑏 should be negative. Note that with
hese quantities defined, the average growth rate per generation can
e decomposed as the sum of the within- (𝛥𝑤) and between-patch (𝛥𝑏)
orces
𝛥𝐸[𝛽]
𝛥𝐺

= 𝐸[𝛥𝑤] + 𝐸[𝛥𝑏] , (14)

where the expectations are over the population of patches in the
system.

3. Single cell bottleneck dynamics

In this section, we discuss the dynamics of the model when it is as-
sumed that the dispersal process imposes a strict bottleneck and, hence,
each patch is founded by a single cell (𝑏 = 1). This allows connection
o the previous work of Black et al. (2020) and establishes results that
an be usefully compared to those generated in the following section
here this assumption is relaxed.

Fig. 2(a) shows the total population within a patch for five in-
ependent realisations of the model, each founded by a single cell
ith the same growth rate 𝛽 = {3.0}. Initially, when the number of

ells is small, there is a phase where the dynamics ‘‘stutter’’, but this
essens once populations grow large enough and exponential growth
egins (Black et al., 2014). During growth, resources are depleted,
hich slows the growth rate, and waste accumulates, increasing the
eath rate of cells. At some point, the number of births and deaths
alance, and populations peak and then decline. The rate of cell death is
roportional to the amount of waste accumulated in each patch. As this
aste is initially zero, there is essentially no chance that the population
f cells dies in the initial stochastic growth phase.

The initial stochasticity affects the time until exponential growth is
eached and, hence, the time for populations to peak. This translates
nto variation in the size of the patches at any given fixed time after
eeding. This is illustrated in Fig. 2(b), which shows the patch size
istribution at 𝑡 = 10. In this example, where patches are sampled a

time long after the populations have peaked, the distribution is skewed
with a heavy tail that leads to a higher mean, relative to the mode.
This is a consequence of some cells entering exponential growth later
than others (due to stochastic fluctuations) and so also entering the
decline phase later. This natural variability in the patch size was not
present to such an extent in the previous model of this process but
was possible to introduce with the addition of extra variability in the
dispersal time (Black et al., 2020).

Fig. 3(a) further illustrates the patch sizes and composition for 64
realisations of the within-patch model at 𝑇 = 10 founded by single
cells with the same growth rate, 𝛽 = {3.0}. Fig. 3(b) shows, for a
single realisation, the populations of the cells by their type, 𝐴𝑖(𝑡), as
a function of time. Together, these results show that mutants of the
original type are not produced until after the original type has reached
an appreciable level, and mutants of mutants (second order mutants)
are comparatively less common. Small bottleneck size at dispersal
thus imposes strong homogeneity on the composition of patches at
later times. A further point concerning the dynamics of the patches is
important: after populations have peaked, the proportion of different

types within each patch remains largely fixed. This is a consequence of
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Fig. 2. Trajectories of cell populations within a patch. (a) The mean total population (red line) and five realisations of the total patch population as a function of time (grey lines).
Patch population is computed as the sum of individual cells in a patch. Only five of the realisations are shown to more clearly illustrate the stochastic effects on the dynamics of
the system. (b) The total size distribution estimated at 𝑡 = 10 from 105 realisations. Other parameters: 𝑉 = 106, 𝛽 = {3.0}, 𝑝 = 0.01, 𝑞 = 0.5, 𝜇 = 0.1.
Fig. 3. Illustration of patch sizes and composition at dispersal. (a) 64 realisations of the within-patch model with the same initial conditions, 𝛽 = {3.0}, at dispersal time 𝑇 = 10.
Each pie has area proportional to the total number of cells with arcs proportional to the composition. (b) A single realisation showing populations by type as a function of time
over the growth phase. Both the pie charts and lines are coloured according to the growth rates for each cell type. Parameters are as in Fig. 2.
the rate of cell death, which is identical for all cells (see Table 1 for the
model rates).

Fig. 4(a) and (b) shows the time resolved dynamics of a number of
independent realisations of the full evolutionary model for two different
dispersal times, 𝑇 = 4 and 10. The dispersal times are chosen to be
short and long, respectively, compared with the time for the population
to peak with an initial growth rate of 𝛽 = {3.0} (see Fig. 2(a)). In
both scenarios, the fitness of patches (reflected in the population size
of cells within patches) increases before reaching an equilibrium and
is achieved through changes in cell fitness (cell growth rate). When 𝑇
is short, the short-term selection between cells within the patch and
selection at the higher level of patches is aligned. When dispersal time
is long, the growth rate of cells decreases over generations of the model.
This phenomenon has previously been called ‘‘fitness decoupling’’,
referring to the fact that fitness at the two levels might no longer
be aligned (Michod, 1999; Okasha, 2008; Black et al., 2020; Bourrat,
2021). However, this interpretation has been called into question, and
an alternative interpretation in terms of environment of reference has
been provided by Bourrat et al. (2022). Following this interpretation,
the reason why cell and collective fitness might appear decoupled is
that they refer to different sets of events. In particular, cell fitness
appears to be decreasing if events of patch reproduction are not taken
into consideration.

With a single cell bottleneck, the evolutionary outcomes and dynam-
ics of the system can be understood using a simple fitness landscape
5

approach (Nowak et al., 2010). This is valid because the accumulation
of mutants in a patch is small and, hence, the mean total population
of the patch at the time of dispersal is strongly correlated with the
growth rate of the founding cells. Landscapes are derived for given
values of 𝑇 by computing the mean total population as a function of
the growth rate of the initial founding cell; the resulting curves are
plotted in Fig. 4(c). These show peaks at different positions for different
dispersal times, which represent equilibrium points of the evolutionary
dynamics. If the model is initialised such that the growth rate of the
cells is away from the equilibrium, these curves indicate that we will
observe evolution ‘‘up the hill’’ towards the peaks (as seen in Fig. 4(a)).
The peaks represent the cell growth rate that optimises the size of the
patches on average for a given dispersal time. Fig. 4(c) shows that it is
the relative length of the dispersal time compared to the time to peak
for an initial growth rate that is important in setting the direction of
evolution in these populations. For example, fixing 𝑇 = 10, if the cell
growth rate was initialised at values < 1.5, we would instead observe
an increase in the growth rate.

The other main parameters of our model, the mutation probabilities,
𝑝 and 𝑞, and step size, 𝜇, affect the rate of evolutionary change observed
in the system but have only small effects on the equilibrium. Hence,
these are largely fixed throughout the remainder of the paper, but we
give a brief summary of their effect here with detailed discussion and
additional simulation results included in the Supplementary Material.

Larger 𝑝 creates more mutations, which leads to larger variability in
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Fig. 4. Evolutionary dynamics for a system with a bottleneck of one cell, and for two different dispersal times, 𝑇 = 4 and 10. (a) The average growth rate over a population of
100 patches and (b) the average total population per patch. The grey lines show 50 individual realisations, and the coloured lines show the averages over these realisations. In
both cases, the dispersal process creates a selection pressure that favours larger patches at the time of dispersal. Dashed lines show the equilibrium growth rates and the starred
points represent patch population sizes for the initial growth rate of the simulations. (c) Fitness landscape view of the evolutionary process for fixed dispersal times 𝑇 = 4 and 10.
ach curve shows the average total population within a patch for a fixed dispersal time as a function of the growth rate of the initial cell that colonises a patch. When 𝑇 = 4, the
opulation peaks at a growth rate of 𝛽 ≈ 4.5, and, when 𝑇 = 10, the maximum population is reached when 𝛽 ≈ 1.5. These peaks, indicated by the dashed lines, correspond to the
quilibrium growth rates reached by the simulations shown in (a). The starred points indicate the patch population sizes for the initial growth rate of the simulations as seen in
b).
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oth patch size and composition at the time of dispersal and faster
volution on average. The likelihood that each mutant is deleterious
r advantageous is determined by 𝑞. Thus, larger values of 𝑞 increase
he production of mutants with smaller growth rate, decreasing within-
atch selection while also increasing the proportion of slower cells at
he time of dispersal. Therefore, this also increases the rate of evolution.
imilarly, larger 𝜇 increases the magnitude of mutations, hence leading
o faster evolution.

Additionally, the volume within each patch, 𝑉 , affects the mean
rowth rate that maximises patch population, which lengthens the
ptimal dispersal time. When there are more resources available in
ach patch, it takes longer for the faster growing cells to begin de-
lining. A more detailed discussion of how these parameters affect the
volutionary dynamics of the system is included in the Supplementary
aterial.

Ecological conditions are key to understanding the evolutionary
ynamics of these nested populations when the dispersal time is long.
imited resources within a patch restrict the total number of cell
ivisions possible. This, coupled with the accumulation of waste, which
apidly leads to cell death after a certain point in time, effectively limits
he period of time over which cells can reproduce, hence also limiting
he production of mutants. This can be contrasted with, for example,
rowth in a chemostat where resources are constantly supplied and
aste removed. In such a reactor, faster growing cells have time to out-

ompete slower types and drive them to extinction. This is not possible
n our model ecology because even though slower growing mutants
re at a disadvantage within the patch, there is insufficient time for
hem to be driven extinct (excluding when the dispersal time is so long
hat all cells go extinct). Thus, patch ecology allows for the production
f a small but significant fraction of slower growing types that can be
ispersed.

In our model, the bottleneck’s main function is to suppress the
rowth of mutants (both faster and slower growing) and, hence, short-
erm competition. This results in the promotion of long-term fitness via
atch-level reproduction at the expense of the short-term advantage of
ast-growing cells within a patch: if a slower growing type is, by chance,
ispersed, it is initially free from competition in a patch, which allows
t to become established. In contrast, when the dispersal time is short,
aster growing cells lead to larger patches; hence, reducing within-patch
ompetition through the bottleneck is not important. For the remainder
f this paper, we concern ourselves only with the situation where the
ispersal time is long compared with the time to reach peak population
or an initial cell growth rate and, hence, increased patch fitness is
chieved by decreasing cell growth rate.
6

. Multi-cell bottleneck dynamics

In the previous section, we showed how a bottleneck of one cell
acilitates an evolutionary process where between-patch selection over
long timescale created by the dispersal process can lead to an over-

ll reduction in the average growth rate of cells over a number of
atch generations. We now expand these results to investigate how the
volutionary process changes when larger bottlenecks are allowed. Sim-
lations are initialised from a homogeneous population of cells with the
ame growth rate—that is, for each patch 𝐗(0) = (0, 𝑉 , ⟨0,… , 𝑎𝑖,… , 0⟩),
here 𝑎𝑖 is the number of type 𝑖 cells. In terms of the multiset notation
efined in Section 2.1, this initial condition is written as {𝛽𝑎𝑖𝑖 }. We
nitially describe results for smaller values of 𝑏 before moving to larger
alues where the picture becomes more complex.

Fig. 5 shows the evolution of the mean growth rate, patch size and
ithin- and between-patch selection averaged over realisations of the
rocess for a series of increasing bottleneck sizes, 𝑏 = 1,… , 5. For
hese sizes, as the system moves through generations, the composition
f patches at the time of dispersal shifts towards cells with slower
rowth rates, and the average patch size increases before eventually
eaching equilibrium. We can observe two main effects of increasing
he bottleneck size: a slowing-down of the evolutionary dynamics and
lso a change in the equilibrium values of both the mean growth rate
nd patch size.

The decrease in the rate of change in average patch size and growth
ate can be attributed to changes in the forces of selection before and
fter patch-level reproduction events. These forces can be quantified
y the expressions given in Eqs. (12) and (13), which measure how
he growth rate changes over a single growth phase (𝛥𝑤) and after a
ispersal phase (𝛥𝑏), respectively. The changes in the expected values of
hese two quantities, averaged over patches and realisations are shown
n Fig. 5(c). The sum of these two quantities corresponds to the rate of
hange (the first derivative) of the curves shown in Fig. 5(a).

Larger bottlenecks increase within-patch selection, as demonstrated
y dashed curves shown in Fig. 5(c) that are shifted upward for larger
alues of 𝑏. This is an obvious implication of the additional competi-
ion between cell types within a patch. With larger bottleneck sizes,
ompetition is present from the beginning of patch colonisation, rather
han arising from mutations later when 𝑏 = 1. However, because the
rowth phase is time limited, cell types do not in general go extinct,
nd this still restricts competition between types. Larger bottlenecks
lso decrease between-patch selection, as can be observed by the solid
urves in Fig. 5(c). This is because larger bottlenecks lower the fidelity
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Fig. 5. Evolutionary dynamics for a system with varying bottleneck sizes. (a) The average growth rate, (b) the average total population per patch and (c) the average change in
growth rate decomposed into within- (dashed lines) and between-patch (solid lines) components. Each line shows the averages over 50 individual realisations. Parameters: 𝜇 = 0.05,
= 0.01, 𝑞 = 0.5, 𝑇 = 10, 𝑀 = 100.
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f transmission of phenotype at the patch level (where the phenotype is
atch size). With a larger bottleneck, different configurations of initial
ell growth rates tend to have similar size distributions at the time
f dispersal. Since patches are chosen in proportion to their size at
ispersal, similar size distributions result in a weaker force of selection.

This effect can be observed by contrasting patch size distributions
or a single-cell and three-cell bottleneck, as shown in Fig. 6. For the
hree-cell bottleneck, both in and out of equilibrium, the correlation
etween the growth rate of the initial cells and the mean patch size
s weakened; hence, on average, the difference in final size between
imilar configurations is smaller. For even larger bottlenecks, this effect
s magnified due to the combinatorial explosion in the possible initial
onfiguration of cell growth rates. Another way of conceptualising the
eakening of the phenotype connection is through the effect on the

itness landscape. The multiplicity in the possible cell combinations
eans that the fitness landscape grows exponentially in dimension

and, hence, is difficult to visualise) and becomes flattened (Reidys
nd Stadler, 2002). The increase in dimension means evolution has to
roceed by smaller steps in an absolute sense, and the flattening means
he fitness difference between these steps is smaller.

The small changes in the equilibrium growth rate visible in Fig. 5(a)
nd (b) are due to a combination of changes in the forces of selection, as
ell as changes in the within-patch dynamics resulting from the popu-

ation starting at a larger initial size. These distort each other, resulting
n non-monotonic behaviour of the equilibrium as the bottleneck is
ncreased. This is discussed in more detail in Section 4.1.

Fig. 7 shows simulations for larger fixed bottleneck sizes of 10,
5 and 20. As 𝑏 increases, a further slow-down of the evolutionary
ynamics is observed, along with a rise in the equilibrium growth rate,
efore an eventual reversal, where the growth rate no longer decreases
ut instead increases without bound. This behaviour is similar to a
hase transition through a critical point (Stanley, 1987). Around 𝑏 = 15,
he forces of selection within the patches and between the patches are
lmost equal and critical slowing-down is observed (Elf et al., 2003),
here the size of fluctuations becomes very large. After this point,
ithin-patch selection dominates between-patch selection, leading to

he continual rise in cell growth rate over generations.

.1. Equilibrium behaviour at larger bottlenecks

A complex pattern emerges in equilibrium values with increasingly
arge bottlenecks. This is further complicated by the possibility of
eversal in the magnitudes of the two forces of selection (as described
bove) and, hence, failure of the system to reach equilibrium. Fig. 8
hows the mean and variance of the growth rate and patch size, both at
quilibrium, as a function of bottleneck size. We run the same analysis
or 𝑀 = 100 and 500 patches. A larger number of patches reduces the
tochasticity resulting from the dispersal process (see Supplementary
7

aterial); hence, between-patch selection is stronger for 𝑀 = 500. Note
that the blue curve does not continue past 𝑏 = 15 as an equilibrium is
no longer reached in this case.

At 𝑏 > 2, the mean patch size (Fig. 8(b)) shows a steady decrease.
his is due to within-patch dynamics that change as the initial num-
er of cells grows. Larger bottlenecks mean that patches are founded
y more cells; however, additionally, populations enter exponential
rowth phase more rapidly. This, in turn, means that a larger bottleneck
educes the time for the population to peak on average (see Figures S8
nd S9 in the Supplementary Material). Hence, for the same dispersal
ime, larger bottlenecks result in a smaller patch size on average.

The variance in patch size initially increases before decreasing. The
nitial increase is due to the changes in the forces of selection and the
ncreasing number of configurations resulting in a larger range of patch
izes at equilibrium. The decrease at even larger sizes is because the
atches can become so small that extinction becomes possible. In the
atch dynamics, a population of zero is an absorbing state, which skews
he size distribution.

The mean growth rate initially drops as the bottleneck increases in
ize before rising. The initial decrease is due to changing of the peak
ime with bottleneck size as discussed earlier. Larger bottlenecks result
n a smaller patch size on average, and so the equilibrium growth rate
o optimise the patch size tends to decrease in order to compensate.
his is eventually counteracted by increasing within-patch selection

eading to the later rise.
The sharp rise in the variance in the growth rate for the 𝑀 = 100

ase is clearly seen (Fig. 8(c)), indicating the position of the reversal
n the magnitude of the forces of selection. It is interesting that, at
east for these parameters, with enough patches in the system, between-
atch selection is always large enough to curtail increased within-patch
election at larger 𝑏.

. Random bottleneck dynamics

Up to this point, we have assumed that the bottleneck is a fixed, de-
erministic size across all patches and generations. We now investigate
hanges in dynamics when this condition is relaxed and bottleneck sizes
re randomly sampled. Each time a patch liberates dispersing cells, the
umber of migrating cells is drawn at random from a fixed distribution
see Eq. (8)), where 𝑓 = (𝑓𝑖)𝑖=1∶𝑁 is the distribution over the possible
izes, and 𝑓𝑖 is the probability of size 𝑖.

Fig. 9 compares evolution of the mean growth rate for several bot-
leneck size distributions. In each case, fixed bottleneck size dynamics
re compared to bottleneck sizes chosen from a discrete distribution,
here  (𝐴) is uniform over the finite set 𝐴. In Figs. 9(a) and (b)

hat include only smaller bottlenecks, we see that the dynamics with a
niform distribution over the sizes lies between the fixed-size extremes.
hat is, when bottleneck size is drawn from a uniform distribution,
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Fig. 6. Patch size distributions at the time of dispersal (𝑇 = 10) for different initial growth rates and bottleneck sizes, both in an out of equilibrium. Panel (a) shows results for a
ingle cell bottleneck out of equilibrium, and (b) at equilibrium (𝛽 ≈ 1.55 in this case). Panels (c) and (d) show the same quantities for a three-cell bottleneck. Note for 𝑏 = 3, the
quilibrium growth rate is lower (𝛽 ≈ 1.35). In all panels, vertical dashed lines indicate the mean patch size for each distribution.
Fig. 7. Evolutionary dynamics with larger bottlenecks. (a) Change in the average growth rate over generations. (b) The sum of the within- (𝛥𝑤) and between-patch (𝛥𝑏) forces
of selection, which illustrates the net force of selection (net change in the growth rate per generation, see Eq. (14)). For 𝑏 = 10 and 15, simulations eventually reach equilibrium;
hence, the difference goes to zero. For 𝑏 = 20, within-patch selection always dominates between-patch selection and so the difference remains positive. Model parameters: 𝑀 = 100
patches, 𝜇 = 0.1, 𝑝 = 0.01 and 𝑞 = 0.5.
the mean growth rate remains between the corresponding maximum
and minimum fixed bottleneck sizes in that distribution. Even when
the bottlenecks are larger (Fig. 9(c)), where the growth rate would be
8

expected to rise if it was a fixed size, we instead see that the mean
growth rate drops, implying that within-patch selection is sufficiently
curtailed by the presence of single-cell bottleneck events. This sug-
gests that only occasional small bottleneck events are necessary for

significant evolutionary change in the growth rate of this system.
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Fig. 8. The mean and variance of growth rate and patch size at equilibrium as a function of bottleneck size for 𝑀 = 100 and 𝑀 = 500. (a) and (c) show the mean and variance
n the cell growth rate. (b) and (d) show the same for the patch size. Note that the curve for 𝑀 = 100 does not continue after 𝑏 = 15 as there is no longer an equilibrium (see

Fig. 7). Other parameters: 𝜇 = 0.05, 𝑞 = 0.5, 𝑝 = 0.01 and 𝑇 = 10.
Fig. 9. The evolution of average growth rate when bottleneck size is chosen from a discrete distribution, where  (𝐴) is uniform over the set 𝐴. (a) and (b) show the dynamics
or mixtures of smaller bottlenecks, (c) shows the effects of a distribution where the size is either large or unicellular.
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We further investigate these effects by focusing on a system with
nly two possible bottleneck sizes: one and 20, and changing the prob-
bility distribution over these sizes. The results of this investigation,
hown in Fig. 10, demonstrate that only a few patches with a single-
ell bottleneck are required per generation to suppress within-patch
election and generate faster evolutionary change in growth rate. Thus,
ven if a bottleneck of size one occurs for only five patches out of 100
n a generation, a decrease in the average growth rate is observed.
his is initially surprising but can be explained by the homogenising
ffect that smaller bottlenecks have on the composition of patches,
s illustrated in Fig. 11. The effect, once initiated, persists through
ubsequent generations, even though later bottlenecks are much larger.
his homogenisation also means that the phenotypic link between the

nitial composition and the patch size is temporarily strengthened, and
o selection will have a greater effect at the higher level. That is, a patch
olonised by 10 cells of the same type will grow to a more deterministic
9

ange of sizes than a patch composed of 10 different types. a
. Discussion

Black et al. (2020) showed that simple environments consisting of fi-
ite, patchily distributed resources and a periodic dispersal process that
lso imposes a bottleneck can scaffold a multi-level Darwinian process.
hen the period of time between dispersal events is long, between-

atch selection causes patches to increase their fitness while driving a
eduction in cell growth rate. This tradeoff creates suitable conditions
or the first steps in the transition from unicellular to multicellular life.
uilding on this previous work, we have developed a fully stochastic
odel of an ecologically scaffolded population to further investigate

he role of bottleneck size on the evolutionary dynamics of the system.
he model presented in Black et al. (2020) was only partially stochastic,
apturing the effects of mutations and stochastic dispersal times, but
id not naturally allow for bottlenecks larger than one due to certain
pproximations used to derive the dynamics.
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Fig. 10. Evolution in the mean growth rate, 𝛽, for a non-uniform, binary bottleneck
istribution. Bottleneck sizes are drawn from a distribution where 𝑓1 = 𝑥 and 𝑓20 = 1−𝑥

with 0 ≤ 𝑥 ≤ 1. Thus, 𝑥 = 1 corresponds to a strict unicellular bottleneck (𝑏 = 1) and
𝑥 = 0 a bottleneck of 𝑏 = 20.

In common with other studies on the role of bottlenecks (Michod
nd Roze, 1999; Bergstrom et al., 1999; Chuang et al., 2009; Cremer
t al., 2012; Melbinger et al., 2015; Rose et al., 2020; Doulcier et al.,
020), we see that the bottleneck mediates opposing selection forces,
ver different timescales, within and between patches. In contrast to
thers, we have adopted a mechanistic modelling approach, so the
ynamics are a function of the interaction of the different components
ather than simply being imposed phenomenologically. This has al-
owed a fine-grained investigation of how the bottleneck affects the
orces of selection at both levels of the model by measuring its effect

in silico. To the best of our knowledge, this is the first analysis of a
dynamic bottleneck with an emphasis on stochastic effects and few
cells, which has so far been absent from the literature. A drawback
of our approach is that we can only simulate our model and, hence,
cannot derive analytic results, but the complexity of the process and
the multi-scale nature of the problem precludes this for now.

Concentrating on the region of parameter space where we see a
decrease in cell growth rate with a single-cell bottleneck, we find that
the process is relatively insensitive to larger bottlenecks up to a point
before the size becomes too big and within-patch selection, caused
by competition between cells with different growth rates, dominates
between-patch selection arising from the dispersal process. Surpris-
ingly, allowing for random bottleneck size distributions did not signifi-
cantly change the evolutionary dynamics compared to the deterministic-
size case and, in fact, enhanced the suppression of within-patch se-
lection more than would be naively thought. Thus, in a system with
a normally large bottleneck that would result in limited evolutionary
change in patch size and cell growth rate, these dynamics can be
accelerated by adding only infrequent small bottlenecks. This finding
enhances the robustness of ecological scaffolding as an explanation for
the evolutionary transition to multicellularity as it demonstrates that
a very strict bottleneck is not a necessary condition for an ETI to be
initiated; infrequent smaller bottlenecks may be enough.

This result brings into question the abundance of single-cell bottle-
necks in nature. Indeed, if a single-celled bottleneck is not required
for ETIs to be initiated, then why are they so ubiquitous in nature?
We have observed that single-cell bottlenecks create stronger between-
patch selection and, hence, generate faster evolutionary dynamics. It
might be that bottleneck size is itself an evolved trait. Such a possibility
seems highly likely in the face of an innovation that generates a
reproductive division of labour: a lineage that has evolved a division
of labour between, for example, soma- and germ-like cells will be out-
competed by a lineage that lacks such a division in cases where patches
10

are established by cells of the two types. Additionally, more complex
developmental processes, which we have not attempted to model here,
would likely benefit from smaller bottlenecks.

Attempts were made to use the model presented herein to addi-
tionally investigate the evolution of bottleneck size. This builds on the
random bottleneck model presented in Section 5. In the results pre-
sented, the parameter 𝑥 controlling the probability of a larger or smaller
bottleneck is fixed, but this can also be made an intrinsic property of
the cells. So, when dispersal occurs, a single cell is initially selected and
its value of the parameter 𝑥 is used to randomly determine if more cells
are dispersed along with it. Thus, 𝑥 can be thought of as the ‘‘stickiness’
of the cell and allowed to evolve along with growth rate. Extending the
model in this way adds considerably to its complexity as two traits now
need to be tracked for each cell. Preliminary results indicate that faster
evolutionary change as a result of smaller bottleneck sizes can drive
evolution in the ‘‘stickiness’’ trait to some extent. However, pinning
down the actual cause of this has proved difficult, and it cannot be
ruled out that the observed results are an artifact of other effects of
changing the bottleneck size, such as on the final size of the patch, as
discussed in Section 4.1. A thorough investigation of the evolution of
bottleneck size likely requires a different model where the final size
of patches is less sensitive to the size of the bottleneck, which is not
achievable with the current model.

Although this work was first conceived to understand ETIs, parallels
and insights into the evolutionary dynamics of host-pathogen systems
are obvious. Nested models have been successful in emphasising the
importance of within-host disease dynamics on pathogen evolution for
some time (Gilchrist and Coombs, 2006; Alizon and van Baalen, 2008;
Luciani and Alizon, 2009; Saenz and Bonhoeffer, 2013). These consist
of both essential and inessential nested hierarchies, which are differen-
tiated by the extent to which feedback between levels is incorporated.
However, the applicability of our findings to these systems will depend
on the relation between the within-host and transmission dynamics. For
many such systems, the transmission event is also under selection and
can typically occur before the pathogen population reaches maximum
size.

Recent studies suggest that transmission involves both stochastic
and fitness bottlenecks and that some pathogens can begin infection
with only a small number of cells in the initial inoculum (Schmid-
Hempel and Frank, 2007; Libby and Rainey, 2011; Joseph et al.,
2015; Moxon and Kussell, 2017). Also, repeated artificial bottlenecks
in viral populations have been demonstrated to severely restrict viral
fitness (Duarte et al., 1992). This, along with new DNA sequencing
techniques, has led to a resurgence of interest in understanding the
size and nature of transmission bottlenecks. Most experimental studies
suggest tight bottlenecks and small founding populations are com-
mon, but these results vary significantly depending on the virus, host
and mode of transmission. For example, experimental infections with
tagged influenza clones in ferrets and guinea pigs indicate that airborne
transmission imposes a much tighter bottleneck between hosts than
by direct contact (Varble et al., 2014). In some cases, HIV has also
been shown to have a very sharp bottleneck of one or very few cells,
consisting of a single genotype (Edwards et al., 2006; Keele et al.,
2008).

Our focus in this work has been on simplicity; creating a minimal
model to investigate the role of the bottleneck size; however, as such,
the current model has several limitations. The dispersal process is not
mechanistic and fully synchronous, which leads to discrete generations.
Also, the resource patches are fully isolated so that no migration takes
place. Hence, when cells are dispersed to a new patch, they all have the
same parent patch. In a real system, all of these conditions are likely to
be violated to some extent. Dispersal events would likely be initiated
by a combination of ecological and biological conditions and take place
in a less synchronous environment (Rainey and Kerr, 2010). Many
of these complications are implicitly related to the spatial structure
of the population, which plays a role in how dispersal mixes cells

between patches. Preliminary investigations show that spatial structure
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Fig. 11. Illustration of the homogenising effect of a randomly small bottleneck. If, by chance, a single slower growing cell is dispersed, this gains a larger advantage by freeing
it from competition, which propagates through many subsequent generations.
and non-synchronous dispersal can be incorporated into these models,
but more work is required to fully understand the implications for the
evolutionary dynamics.

Adding a program of growth and development with specific cell
types has the potential to align more closely with ongoing experimental
studies (Rainey and Kerr, 2010; Rose et al., 2020). A developmental
program requires the coordination between cells and could be an
important driver of bottleneck size evolution; this is something to be
explored in further studies. There are also certain aspects of our results
that can be traced to the particular model we have implemented rather
than being fully general. For example, cells in a patch do not start dying
until waste products increase in concentration, so early extinction of
cells does not occur. If cells were allowed to die from the beginning of
colonisation, many patches would go extinct by chance, especially with
smaller bottlenecks and lower growth rates. This may then favour larger
bottlenecks that would have some buffer against this. Such effects
would require a more ecologically complex model, as stated above.

We have shown that ecological scaffolding can provide a robust
framework for evolutionary change even when the size of transmission
bottleneck between patches is relaxed. By quantitatively measuring the
effects of a larger bottleneck on the forces of selection, a plausible
way to further investigate the effects of bottleneck size on evolutionary
dynamics in structured populations has been revealed. This may help
inform further investigations into viral transmission, in addition to
providing insights into ETIs.
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