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Abstract
Showing that the arithmetic mean number of offspring for a trait type often fails 
to be a predictive measure of fitness was a welcome correction to the philosophi-
cal literature on fitness. While the higher mathematical moments (variance, skew, 
kurtosis, etc.) of a probability-weighted offspring distribution can influence fitness 
measurement in distinct ways, the geometric mean number of offspring is commonly 
singled out as the most appropriate measure. For it is well-suited to a compound-
ing (multiplicative) process and is sensitive to variance in offspring number. The 
geometric mean thus proves to be a predictively efficacious measure of fitness in 
examples featuring discrete generations and within- or between-generation variance 
in offspring output. Unfortunately, this advance has subsequently led some to con-
clude that the arithmetic mean is never (or at best infrequently) a good measure of 
fitness and that the geometric mean should accordingly be the default measure of 
fitness. We show not only that the arithmetic mean is a perfectly reasonable measure 
of fitness so long as one is clear about what it refers to (in particular, when it refers 
to growth rate), but also that it functions as a more general measure when properly 
interpreted. It must suffice as a measure of fitness in any case where the geomet-
ric mean has been effectively deployed as a measure. We conclude with a discus-
sion about why the mathematical equivalence we highlight cannot be dismissed as 
merely of mathematical interest.
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Introduction

It is notoriously difficult to make the concept of fitness in evolutionary population 
biology precise. Among the advances that have been made toward clarifying it is 
the realization that some simple summary statistics, such as the arithmetic mean of 
a probability distribution over reproductive output, do not always accurately capture 
the concept of fitness. Beatty and Finsen (1989), Brandon (1990), and Sober (2001), 
among others, have shown why it is often preferable to use more informative meas-
ures of fitness. The geometric mean has been singled out as particularly important in 
this regard since it is attentive to the variance or “spread” of data and has a realistic 
biological interpretation with known implications for evolutionary dynamics. This 
correction was as welcome as it was overdue. It emphasizes the importance of being 
precise about what exactly it is that such measures should lead us to expect. The 
fact that “expected reproductive output” and “expected reproductive success” can be 
decoupled was a key revelation because it sanctioned the possibility that an individ-
ual could have high (multigenerational) reproductive success despite a low expected 
reproductive output. However, a peculiar tendency has subsequently emerged within 
philosophy of biology. It is not at all uncommon to read or hear that one should 
always defer to the geometric mean as the default summary measure of fitness. The 
purpose of this paper is to show that the arithmetic mean can be a perfectly rea-
sonable measure of fitness so long as one is clear about what it refers to. In fact, it 
must suffice as a measure of fitness in any case where the geometric mean has been 
effectively deployed as a measure. It is not our aim, however, to introduce a new or 
alternative measure of fitness into the existing literature. Rather, we wish to clarify a 
ubiquitous but potentially confusing feature of any sophisticated fitness measure and 
elaborate on why the mathematical equivalence we highlight cannot be dismissed 
as merely of mathematical interest. The points argued for in this paper may conse-
quently be of interest to propensity theorists who would like to better understand the 
mathematical underpinnings of token fitness (i.e., fitness as a measurable property 
of individual organisms), in addition to those who believe that fitness ascriptions are 
best reserved for trait types. For present purposes, we remain neutral on this issue.

Background: limits of the arithmetic mean

Philosophers have hailed the propensity interpretation of fitness (hereafter ‘PIF’) 
as a major achievement (Brandon 1978; Mills and Beatty 1979). It was developed 
as a response to the common practice of defining and measuring fitness as the 
realized or actual reproductive output of an individual (Mills and Beatty 1979; 
Millstein 2016).1 Doing so creates insurmountable difficulties for evolutionary 

1 The problems of “measurement” at issue are those that arise when specifying a mathematical definition 
of fitness or a so-called “fitness function” and thus do not pertain directly to the ways biologists interact 
with real populations or datasets in order to determine fitnesses. We thank an anonymous reviewer for 
suggesting this clarification.
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theorizing. As noted by several early critics, perhaps most provocatively by Pop-
per (1974), if evolution via natural selection is depicted as “the survival of the 
fittest” (a la Herbert Spencer) and the “fittest” are defined as “those that actu-
ally survive and reproduce,” the concept of fitness becomes tautologous. It is 
accordingly rendered empirically unfalsifiable and explanatorily impotent. The 
fittest individuals in a population just happen to be those that survive and pro-
duce the most offspring, irrespective of the reasons for their having done so. As 
such, reproductive output would no longer be reliable evidence upon which to 
infer the character states that are better able to meet ecological challenges to sur-
vival. This is clearly an unwelcome consequence, one that was foreshadowed by 
Michael Scriven’s (1959) example involving identical twins (i.e., physical dupli-
cates in the philosophical sense) who exhibit differential viability (e.g., one sur-
vives while the other dies by way of lightning strike). There is no selectively rel-
evant difference, as in heritable character state variation(s), that can account for 
the twins’ distinct evolutionary fates. Therefore, there must be more to fitness 
than actual survival and reproductive output.

Those who introduced the PIF (Brandon 1978; Mills and Beatty 1979) recog-
nized that fitness must be empirically sensitive to actual lifetime reproductive output 
without being exhaustively defined by it. Crucial for the PIF’s success was its distin-
guishing two desiderata that any definitional analysis (or explication) of fitness must 
address. On the one hand, a definition of fitness should justify use of the concept as 
a causal parameter in explanations for why some character states or trait variants 
(and the organisms that exemplify them) are more prevalent than competing charac-
ter states or trait variants in a population. On the other hand, an adequate definition 
of fitness should inform or (at least) be consistent with measures of fitness that accu-
rately predict the direction and magnitude of relative frequency changes or mean 
phenotype values due to natural selection.

Mills and Beatty’s (1979) and Brandon’s (1978) proposals shared two key com-
ponents designed to meet these desiderata. The metaphysical or ontological compo-
nent addressed the former desideratum by depicting fitness as a probabilistic dispo-
sitional property or “propensity.” Fitness is thereby an intrinsic and objective feature 
of a token organism, albeit one that finds expression only in the organism’s rela-
tion to specified selective environments. The epistemological component addressed 
the second desideratum by acknowledging the mathematical function(s) used to 
estimate this propensity. It is estimated via a probability-weighted average over 
reproductive outcomes for an individual after a specified period. The major shift in 
thinking about fitness that was ushered in with the PIF involved reidentifying the 
individual organisms constituting a population as members of sets. The sets that are 
most relevant to explanation in evolutionary population biology are composed of 
individuals who exhibit the same character state or trait variant (e.g., blue feather 
coloration as opposed to red; diploid genotype AA rather than Aa or aa). This shift 
to type identification based on variation in what is otherwise a uniform selective 
environment (i.e., background conditions equally or randomly experienced by all) is 
what makes it possible for individuals of the same type to (probabilistically) realize 
different reproductive outcomes. Two or more organisms of the same type can do so 
while still maintaining the same dispositional tendency. This possibility severs the 
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problematic definitional link between an individual’s actualized reproductive contri-
bution and its fitness.2

However, the PIF faces a number of problems. In addition to those who have 
directly questioned the characterization of fitness as a propensity (Abrams 2007; 
Ariew and Ernst 2009; Walsh 2007, 2010; Bourrat 2017), the metaphysical status 
of propensities in general has come under heavy scrutiny (Hájek 2019; Rosenthal 
2010; Strevens 2011). Despite its importance, we shall ignore this strand of criti-
cism. Our focus is restricted to the epistemic advances inherited by philosophers 
of biology from the work of Beatty and Finsen (1989), Brandon (1990), and Sober 
(2001). Drawing on insights from theoretical biology (Gillespie 1977; Levins 1968; 
Lewontin and Cohen 1969; Thoday 1953), these critics have, in various ways, ques-
tioned the very possibility of measuring fitness accurately via the assignment of a 
single, unchanging numerical value. Early formulations of PIF (Mills and Beatty 
1979; Brandon 1978) generally took it for granted that the fitness of an individual 
could be determined statistically by deriving the offspring contribution from a prob-
ability-weighted distribution over reproductive output for the individual. Unfortu-
nately, as noted by Beatty and Finsen (1989), Brandon (1990), and Sober (2001), 
summarizing the probability distribution with the arithmetic mean offspring con-
tribution (or the “expectation”) often leads to erroneous prediction. The arithmetic 
mean can be an insufficient measure of fitness because it ignores occasionally cru-
cial information about the probability distribution over reproductive output. Notably, 
it does not account for the higher mathematical moments of statistical distributions 
(e.g., variance, skew, kurtosis). Such simplification or oversight cannot be justi-
fied on the grounds of parsimony, or in the sense of these moments being nothing 
more than intriguing mathematical artifacts. The higher moments of a distribution 
often have realistic interpretations corresponding to causally relevant features of the 
organism–environment systems that affect the predictive efficacy of fitness meas-
ures. Variance, for instance, can represent the effects of demographic stochasticity 
or environmental stochasticity.3 The former is due to within- and between-genera-
tion differences in number or timing of offspring. The latter occurs with fluctuations 
in the biotic and abiotic components of the selective environment. Both are known 
to influence ecological and evolutionary dynamics (Lande et al. 2003; Lenormand 
et al. 2009; Takacs and Bourrat 2021).

3 Although we here restrict discussion to variance, higher mathematical moments (e.g., skew, kurtosis) 
can also capture aspects of stochasticity. For an introduction to dynamical, mechanistic approaches that 
take “eco-evo” feedbacks and, thus, changes to higher mathematical moments seriously, see Smallegange 
and Coulson (2013).

2 As noted by an anonymous reviewer, Brandon (1978) does not actively endorse the view that fitnesses 
of traits are averages of fitnesses of token organisms. However, we believe that this is the only way to 
make Brandon’s proposal empirically adequate.
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Properly computing the mean number of offspring: a few examples

A vignette adapted from Wagenaar and Timmers (1979, p. 241) demonstrat-
ing the common misperception of exponential growth can convey the practical 
importance of using the geometric mean. Envision a boy who would one day take 
his father’s place as the mandarin whose assignment it was to oversee the impe-
rial water garden. When this boy was still quite young, his father declared that a 
newly constructed pond within the garden was to contain duckweed. As a ges-
ture of unyielding paternal love, he permitted his son to plant the first duckweeds 
in the pond. There was, however, a caveat. Emperor’s fiat had it that the most 
aesthetically appealing situation was one in which duckweed occupied no more 
than half the pond’s total surface area. Any more than this and the mandarin in 
charge would forever “sleep with the duckweed.” When the boy, now a mandarin, 
turned 70 years of age, he proudly observed that the pond was 1/8 covered with 
duckweed. Never once did he worry about the growth of the duckweed exceeding 
the emperor’s strict limit. After all, he had a lifetime’s worth of observations that 
seemed to suggest it would not happen anytime soon. His once routine checks on 
the pond thus became increasingly infrequent and eventually ceased altogether. 
However, unbeknownst to this boy-become-mandarin was the fact that the duck-
weed doubled every five years. So, to the great consternation of the complacent 
mandarin, and the equally great satisfaction of the neglected duckweeds, the pond 
would be more than half covered come the time of his eighty-first birthday. A 
commonsense notion of “expectation,” as in what one might expect to happen 
after unreflectively applying the arithmetic mean (to duckweed growth), can set a 
dangerous precedent.

An example of intergenerational reproductive variance among competing char-
acter states inspired by Beatty and Finsen (1989) illustrates the necessity of heed-
ing the geometric mean in a more mathematically rigorous way. Suppose we have 
two  selectively relevant character states (or trait variants), A and B, in a popu-
lation. By stipulation, these are mutually exclusive and exhaustive. The species 
exhibiting this character is asexual, and individuals must breed true to form (i.e., 
progenitors give rise only to descendants of the same type). Let us also make 
the simplifying assumption that there are discrete (non-overlapping) generations. 
Type-A individuals can contribute either five or six offspring with equal probabil-
ity, while type-B individuals can contribute either two or ten offspring with equal 
probability. However, all individuals of a type within a generation must give rise 
to the same number of offspring (i.e., there is no intragenerational variance). Cen-
sus data gathered over eleven generations reveal the following (Table 1):

This simple case demonstrates how variance in offspring contribution among 
competing trait types can make a difference to their evolutionary trajectories or 
“fates.” In the first generation, the character states were equally prevalent in the 
population. Both had a frequency of 0.5. By the eleventh generation, character 
state A rose to a frequency of 0.88, while character state B plummeted to a fre-
quency of 0.12. This appears (ceteris paribus) to be a classic case of directional 
selection favouring individuals who bear trait variant A, with variant B well on 
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its way to extinction. Yet, this is inconsistent with what one would have predicted 
if the “expectation” or arithmetic mean number of offspring for each trait type 
was taken as a proxy for fitness. The values for arithmetic mean number of off-
spring suggest that B-type individuals have higher fitness (6.0) than their A-type 
counterparts (5.5). In this case, it is consequently wrong to use the arithmetic 
mean number of offspring as a predictive measure of fitness. The geometric mean 
provides us with a much better prediction, one that holds despite common-sense 
expectations to the contrary.

Unlike the arithmetic mean number of offspring, the geometric mean gives us a 
better result because it is sensitive to (“discounts for”) intergenerational variation in 
offspring output. The geometric mean is a measure of central tendency defined as 
the n-th root of the product of n numbers. For numbers  x1,  x2, …,  xn, it is defined as 
follows:

It can account for the fact that the reproductive contribution of B-type individuals 
varies dramatically around the arithmetic mean between generations. The deriva-
tion of the geometric mean number of offspring is particularly sensitive to those 
instances or generations where B-type individuals contribute just two offspring each. 
The long-term relative fitness cost incurred during such “bad years” (generations 1, 
3, 5, 7, and 9 in Table 1) is not offset by the large gains that accrue during the “good 
years” (generations 0, 2, 4, 6, and 8 in Table 1). This is because the biological pro-
cess of reproduction, as it pertains to the relative fitness of competing trait variants, 
is multiplicative. The growth of a lineage is a “compounding process” in the sense 
that the overall reproductive contribution of a type to the number of individuals who 
bear that type in a subsequent generation depends on the number of individuals with 
the type in the current generation. The reproductive contribution that B-type indi-
viduals could make toward increasing the relative frequency of their type in what 
is an otherwise “good (high fecundity) year” is diminished by its application to the 
outcome of a preceding “bad (low fecundity) year.” This is evident if one compares 
the difference between what the number of B-type individuals would have been if 
the population had grown according to the arithmetic mean (without variance) and 
the actual number of B-type individuals in Table  1 (third vs. first columns under 
variant B). This penalty becomes more pronounced with the passage of time. In 
Sisyphean fashion, the selective relief experienced by the B-type during the “good 
years” becomes increasingly shorter-lived as the hill to climb grows into a mountain.

The geometric mean number of offspring tracks the fitness cost associated with 
variance in finite populations. Other things (e.g., arithmetic means) being equal, 
character states with lower variance have a higher probability of increasing in fre-
quency. This holds even when variance in offspring contribution is depicted as a 
within-generation (intragenerational) occurrence (Sober 2001). Higher mathematical 
moments (e.g., skew, kurtosis) of probability distributions over offspring contribu-
tion for competing trait types, although typically of lesser significance than variance, 

(

n
∏

i=1
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)
1

n

=
n
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(

x
1
x
2
… xn
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can generate similarly intractable problems for evolutionary predictions based on a 
single, static measure of fitness (Beatty and Finsen 1989; Gillespie 1977). To ade-
quately recover fitness as a measurable propensity would seem to require extracting 
all information from the probability distribution over possible reproductive output.

Why the arithmetic mean nevertheless remains a good measure 
of fitness

As discussed earlier, the case against using the arithmetic mean as a measure of fit-
ness appears decisive. We now explain why the temptation to construe the situation 
as such should be resisted. The first step in justifying our reticence is to reiterate 
that evolutionary explanations are concerned typically with the growth of lineages 
generated by competing character state types. In other words, evolutionary popula-
tion biology compares the growth rates of subpopulations distinguished by charac-
ter state. Population growth is a compounding (multiplicative) process, a fact which 
figures prominently in the criticisms lodged by Beatty and Finsen (1989), Brandon 
(1990), and Sober (2001). Population abundance increases geometrically (if mod-
elled in discrete time) or exponentially (if modelled in continuous time), rather 
than linearly (i.e., as if adding the same number of individuals in each generation). 
Although researchers in theoretical population biology rarely make this explicit, 
what many refer to when using expressions like “growth rate of the population” 
is the growth rate of the logarithm of population size. Conversion to a logarithmic 
scale is what enables them to recapture a linear approximation of (i.e., constant scal-
ing factor for) population growth rate and, thereby, abundance in continuous time.

Returning to the example illustrated in Table 1 makes this distinction apparent. 
If the sole individual with character state type B in the first generation produces 
ten B-type offspring, each of whom produces two B-type offspring, this is equiva-
lent to a situation where individuals produce (10 × 2)

1

2 =
√

20 =4.47 offspring each 
generation, as opposed to (10+2)

2
= 6 offspring each generation, as per the arithmetic 

mean.4 Note that the progenitor of this lineage will have 20  grand-offspring, just 
as if the population was multiplied by the geometric mean of 4.47 each generation 
(e.g.,

√

20 ×
√

20 = 20 ) rather than the arithmetic mean of 6 (e.g., 6 × 6 = 36 ). As 
many have recognized, the proper way to average a geometric growth rate is accord-
ingly to take the geometric mean of the multiplicative terms (i.e., the n-th root of n 
factors). However, the more general context for assessing population growth is loga-
rithmic space. For to average over changes on a log scale is to average the propor-
tional changes in population size across successive time steps rather than the absolute 
changes in population size.5 On a log scale, it is the arithmetic mean that provides 

4 Readers should note that we have chosen to round logarithmic values throughout the paper to facilitate 
exposition and comprehension.
5 Within log-space one can, for instance, easily see why it is that an absolute increase of 50 individ-
uals over one generation indicates greater growth for a population initially consisting of 25  (25 → 75; 
75 / 25 = 3.0) than it does for a population initially consisting of 100 (100 → 150; 150 / 100 = 1.5).
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the correct result. The logarithm of population size increases by ln(10)+ln(2)
2

= 1.50 
each generation (for a total increase of ln  (20)).6 In contrast, use of the geometric 
mean on a log scale would lead one astray: 

√

ln(10) × ln(2) = 1.26 ≠ 1.50 . Thus, 
asserting that the geometric mean is “better than” or “superior to” the arithme-
tic mean can be just as problematic as adopting the arithmetic mean (of offspring 
output) when the quantity to be averaged (e.g., number of offspring vs. number of 
grand-offspring) is left unspecified. Neither Beatty and Finsen (1989) nor Brandon 
(1990) or Sober (2001) leave the quantity unspecified. The geometric mean is a sta-
tistical summary measure of number of offspring for them. It is a perfectly admis-
sible measure of fitness in the types of cases that they discuss. Later in this section, 
we show how even this careful specification of the quantity measured can fall short 
for preserving the geometric mean as the “most generally applicable” or “default” 
measure of (relative) fitness.

Thus far, we have shown only that the arithmetic mean change in log population 
size is equivalent to the geometric mean number of offspring, not that the former 
is preferable to the latter. This result should not come as a surprise since comput-
ing fitness using the arithmetic mean of the log population size increase is strictly 
equivalent to computing it with the geometric mean of the multiplicative terms. By 
the basic properties of the log function, e

ln(10)+ln(2)

2 = (2 × 10)
1

2 =
√

20 , with Euler’s 
number e  ≈  2.718. It is always true for multiplicative (compounding) processes, 
irrespective of their deterministic or stochastic nature, that the arithmetic mean of 
the exponential growth rate is equivalent to the geometric mean of the multipli-
cative growth rate.7 In the absence of intergenerational fluctuation (i.e., when the 
population is multiplied by a constant growth rate every generation), the arithmetic 
and geometric means for number of offspring are equal8; therefore, this distinction 
proves unnecessary.

In and of itself, the foregoing mathematical equivalence is of little philosophical 
interest. Its importance only begins to take shape when noting how the equivalency 
between the geometric and exponential notation hints at a seminal link between evo-
lutionary biology (e.g., population genetics) and population ecology. The dynam-
ics of a closed biological population (i.e., its growth, decline, or stasis) ultimately 
consist of the very same births and deaths that are used to determine fitness values 
(Crow and Kimura 1970, p. 7; Hamilton 2011, pp. 185–188; Hartl and Clark 1997, 
pp. 216–218; Rice 2004, pp. 6–8). Where N

0
 and Nt are, respectively, the population 

size at an initial time 0 and a subsequent point in time t (e.g., the next generation), 

6 After two bouts of reproduction, the total increase of the natural log of population size in the third 
generation would be 1.5 + 1.5 = 3.0 ≈ ln(20). This becomes somewhat more obvious when recalling that 
the growth rate (1.5) features as an exponent with base e (Euler’s number e ≈ 2.718): e1.5 ≈ 4.48. So, 
e
1.5 × e

1.5 = e
1.5+1.5 = e

3.0 ≈ 20 , and ln(20) ≈ 3.0.
7 Sober erroneously states that “The appropriate measure for fitness in this case is the geometric mean 
of offspring number averaged over time; this is the same as the expected log of the number of offspring” 
(2001, p. 31 [emphasis added]). As written, the stated equivalence is false. The geometric mean of off-
spring number averaged over time is the same as the exponential of the natural logarithm of expected 
number of offspring.
8 In other words, when there is no intra- or intergenerational variance in offspring output, the population 
is multiplied by a constant growth rate m, where 

∏

n

i=1
m

1∕n =
1

n

∑

n

i=1
m = m.
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and ert is the finite rate of increase represented in exponential form (with Euler’s 
number e), we have the integrated form of the well-known exponential equation for 
population growth that predicts population size: Nt = N

0
ert . Deriving the average 

individual fitness of population members requires solving for r, the “intrinsic rate of 
increase” (or “Malthusian parameter”). A sequence of simple algebraic rearrange-
ments followed by a transition to differential form shows how this can be done:

On the simplifying assumption that this population began with a single member 
(i.e., N

0
= 1 , so that ln

(

N
0

)

= ln(1) = 0 ), we then have:

Two key points can be made with this formal apparatus in place. First, it makes 
explicit what is typically taken for granted by many theoretical population biolo-
gists; namely, that population growth rates are determined by change in the loga-
rithm of population size. This is already evident on the left-hand side of the equation 
in step (4) and is transparent on the left-hand side of Eq. (7). Tracking change in the 
logarithm of population size is what licenses the arithmetic mean as a measure of 
fitness for a multiplicative process in continuous time (the importance of continuous 
time will be discussed momentarily). Second, the intrinsic rate of population 
increase (r) is equivalent to the per capita instantaneous change in population size.9 
The second term in the rearrangement on the far right-hand side of Eq. (7), 1

Nt

 makes 
this clear. This represents the average contribution that each of the individuals 
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constituting a population makes (per unit time) to the change in population size. 
Although commonly encountered as a general population level parameter in the con-
text of population ecology (where individual variation is glossed over), it functions 
as an evolutionary measure of fitness when the “population” for which it is derived 
happens to be a subpopulation whose members share a unique character state or trait 
variant. For example, in population genetics, this value is typically referred to as a 
“genotype specific growth rate” or, more simply, “absolute fitness” and “Malthusian 
fitness” (Hamilton 2011, p.185; Hartl and Clark 1997, p. 218). Importantly, such 
subpopulations can consist of a single member (McGraw and Caswell 1996, p. 49; 
Wagner 2010, pp. 1359–1360; Fisher 1930, pp. 23–24). While it is not our aim to 
endorse fitness as a propensity of token organisms, it should be recognized that 
recasting the individual as a “subpopulation of one” or “invading novel mutant” 
with a probabilistic tendency to give rise to a lineage with some number of members 
given a specified duration of time is central to theoretical frameworks such as adap-
tive dynamics (Metz et al. 1992; Pence and Ramsey 2013; Tuljapurkar 1989).

In effect, what many population biologists do when they deploy these ecological 
measures in an evolutionary setting is to compare the intrinsic growth rates associ-
ated with lineages of trait types to derive relative fitness values. The geometric mean 
number of offspring, focusing as it does on reproductive output rather than growth 
rate, works well10 with discrete population growth and non-overlapping generations. 
Intrinsic growth rate is equal to reproductive output in such circumstances. However, 
this should not mislead us into thinking that reproductive output is the more general 
measure; it represents a “special case” of continuous time population growth.

Readers will surely have noticed that the example we provide (Table 1) involves 
a population that grows (reproduces) discretely with non-overlapping generations. 
In that particular case, it is perfectly acceptable to use the geometric mean number 
of offspring as a measure of fitness. Why, then, should an instantaneous measure of 
fitness (r) for continuous (i.e., non-generational) time be considered a more basic 
or fundamental measure? The deceptively simple but potentially confusing answer 
from population biology draws on calculus: the continuous model is equivalent to a 
discrete difference equation with an infinitely small time step. The preceding ques-
tion then becomes “why prefer a measure of fitness based on an infinitely small time 
step?” The direct answer is that one must defer to an instantaneous or intrinsic rate 
of increase whenever the finite timescales over which we measure the fitness of 

10 Rather than provide definitional criteria for any model to “work well,” we assume a very simple stand-
ard for model comparison that relies on a comparative notion: one model or measure is “better than” 
another if the prediction(s) that it makes for relative representation over well-delineated spatial and tem-
poral scales for a specified population are more accurate than those made by its competitor (ceteris pari-
bus). Unpacking the ceteris paribus clause would reveal assumptions such as: (1) more predictively accu-
rate models or measures that include more parameters are not penalized significantly for their additional 
complexity (e.g., via Akaike Information Criterion scores); (2) the thresholds for acceptable error are 
similar; and (3) that the costs associated with parameter estimation, data collection, and data analysis 
are comparable. Engagement with this topic is beyond the scope of this paper. For the interested reader, 
we recommend Michael Weisberg’s Simulation and Similarity: Using Models to Understand the World 
(2013).
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competing character states are unequal. We now provide an example that shows why 
the instantaneous measure should be granted explanatory precedence.

Consider two  closed human populations that exhibit unequal constant growth 
rates (i.e., birth and death rates remain constant).11 Let us refer to these popula-
tions as P1 and P2, respectively. Reproduction in human populations does not occur 
in discrete generations. Humans reproduce “year round,” and generations overlap. 
We have no well-defined reproductive schedules. Suppose we have census data on 
the size (i.e., absolute abundance) of both populations. The catch is that the census 
data for P1 are taken once every 20 years, whereas the data for P2 reflect a 30-year 
census period. We want to know which population grows faster. How is a compari-
son to be drawn? The problem confronting the demographer in this case parallels 
the problem faced by an evolutionary population biologist who investigates distinct 
trait variants exhibiting divergent reproductive schedules with unequal time steps. 
Although this example involves uniform populations, it should not be forgotten that 
the “population” of importance for assessing relative fitness ultimately consists of 
subpopulations whose members are unified by their exhibiting the same character 
state or trait variant. However, let us momentarily set aside this complication and 
instead examine these two populations sans (intrapopulation) variation.

Growth in either of these populations can be modelled with a discrete difference 
equation wherein a population increases by a constant proportion, g , over the time 
step determined by its census period:

Here, ‘ g ’ is the discrete growth factor.12 Let us assume that P1, which has a time 
step of 20 years, grew by 20%. As such, g1 = 0.20 for P1. P2, with its time step of 
30 years, grew by 25%, so g2 = 0.25 for P2. If each population exhibits a constant 
increase associated with its distinct census time, the population size for the follow-
ing time step (Nt+1) could be modelled as in Eq. 8. This reflects the actual or realized 
increase in the population size over a single time step (20 years for P1; 30 years for 
P2). Simple algebraic rearrangement permits the following transformation:

The factor (1 + g) indicates the finite rate of increase and is more commonly 
denoted by λ. Substituting this notation into the difference equation yields a form 
that may be more familiar to readers:

(8)Nt+1 = Nt + gNt

(9)Nt+1 = Nt(1 + g)

11 The deterministic dynamics we introduce here should be understood as the large population limits of 
an individual-based stochastic process that (if modelled) would make explicit the probability weightings 
that are central to PIF. Thus, a probabilistic measure of individual fitness could be derived from each 
measure in our example (i.e., for each population and time step). Critically, however, even such explicitly 
probabilistic measures and their associated stochastic dynamics would not immediately resolve the issue 
of how to directly compare them.
12 In the following, we will drop the subscripts when either population could be referenced, except when 
there is possible ambiguity.
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If λ > 1, the population is growing. If 0 < λ < 1, the population is in decline. And 
if λ = 1, the population is at equilibrium, where birth and death rates are perfectly 
balanced. It is important to note that λ is equal to the ratio of the population size 
during the next time step (Nt+1) to the population size for the current time step 
(Nt): Nt+1/Nt = λ. It thus measures the proportional (contra absolute) change in popu-
lation size from one year to the next. Given λ and an initial population size (Nt), we 
can with Eq. 10 predict the size of either population at any time step in the future. 
This can be done because the output of Eq. 10 (Nt+1) serves as the input (Nt) for 
the calculation of the subsequent time step  (Nt+2). If we accordingly wanted to pre-
dict the population size two time steps into the future, we would do so as follows: 
 Nt+2 = λ(Nt+1) = λ(λ  Nt) = λ2Nt. Of course, this calculation could be repeated as many 
times as needed to reach a desired time step. The general solution to this recursion 
equation after t years (with  N0 as initial population size) is:

Now, it is crucial to recognize that λ is necessarily associated with a particular 
time step in the equation, in this case a (discrete) census time of 20 years for P1 and 
30 years for P2. Consequently, there may remain looming uneasiness concerning the 
seemingly arbitrary choice of a 20-year time step over a 30-year time step (or vice 
versa) as the proper duration over which to measure. Similar scepticism may very 
well infect any other proposed discrete duration for measurement.

How, then, can this anxiety be assuaged? Since λ is “time step-dependent” it 
cannot be changed by simple scaling. Recall that in our ongoing example for P1 
(with a 20-year time step), we have g1 = 0.20, which means that λ1 takes a value of 
1.20. To compare this against P2 (g2 = 0.25,  λ2 = 1.25), which has a 30-year time 
step, one might naively assume that a straightforward rescaling procedure would 
suffice, whereby the finite rate of increase (λ1) for P1 is multiplied by the number 
of 20-year periods in a 30-year time step (30/20 = 1.5): 1.20 × 1.5 = 1.80.13 But a λ1 
value of 1.20 with a 20-year time step is not equivalent to a λ1 value of 1.80 with 
a 30-year time step. The latter value of λ1 indicates an 80% increase in population 
size. It cannot be “scaled down” to recover the realized, constant 20-year increase of 
20%. Therefore, it is no mere redescription of population growth on a different (e.g., 
30-year) timescale.

Correctly changing the time step of λ1 for explicit comparison of P1 against P2 
involves a sequence of three  steps. The first step requires converting λ1 to r, the 

(10)Nt+1 = �Nt

(11)Nt = �
tNo

13 Doing so would be tantamount to comparing growth rates only every 60  years, as this is the least 
common multiple of these time steps (i.e., three steps for P1, two steps for P2; we do this in the main 
text below with our “check for accuracy”). While this can be accomplished for such a simple case, it is 
inadequate as a general strategy for more complicated scenarios that require comparison of many distinct 
growth rates with unequal time steps.
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instantaneous or intrinsic rate of increase (or Malthusian parameter). In the limit, 
as the time step associated with λ1 becomes infinitesimally small, it is the case that 
λ = er.14 Taking the natural logarithm of both sides makes the operation more obvi-
ous: r = ln(λ). Using the value of λ1 for P1 from our example subsequently renders 
r = ln(1.20) = 0.182. The second step is to scale r to the appropriate time step. The 
unit of measure for this newly derived value for r is average number of offspring 
per individual per 20  years. It is still fit to a 20-year time step. Accordingly, we 
must scale this to a 30-year time step, which requires multiplying r by the number of 
20-year periods in a 30-year period (30/20 = 1.5): 0.182 × 1.5 = 0.273 offspring per 
individual per 30 years. The third and final step is to convert the now appropriately 
scaled value of r back to λ1 by using λ = er (from above): e0.273 ≈ 1.314 offspring 
per individual per 30 years. The result can be checked for accuracy using Eq. 11: 
Nt = λtNo. Notice that the 20-year finite rate of increase (λ1 = 1.20) must meet the 
condition that, when multiplied by itself one and a half  times (t = 1.5), it yields a 
30-year finite rate of increase of 1.314. And so it does: 1.20

3

2 =
√

1.20
3 ≈ 1.314 . 

This is the correctly scaled (with a 30-year time step) per capita contribution to the 
discrete rate of increase in P1. It can now be compared directly against the finite 
growth rate of P2 (λ2  =  1.25). Comparing the two  discrete rates reveals that P1 
“increases more quickly than” (read “is fitter than”) P2 with a 30-year time step, 
contrary to initial appearances that suggested a per time step increase favouring P2 
(g2 = 0.25, λ2 = 1.25) over P1 (g1 = 0.20, λ1 = 1.20).

So far, so good. A direct comparison could also have been drawn by calculat-
ing the geometric mean increase in population size (per capita number of offspring) 
for P1. In fact, we showed this in the second half of the preceding paragraph when 
we calculated that λ1

t = 1.201.5 = 1.20
3

2 =
√

1.20
3 ≈ 1.314 . A problem neverthe-

less remains. The direct comparison has been achieved at the cost of privileging 
the discrete 30-year time step for the measurement of fitness. Alternatively, we 
could just as easily have privileged P1’s discrete 20-year time step by rescaling P2’s 
finite growth rate over a 30-year period to a corresponding 20-year period using 
the three  steps noted above. However, neither option suffices. Human populations 
reproduce continuously, and generations overlap. There are no discernible, discrete 
reproductive schedules when it comes to human populations. Whether it be a 20- 
or 30-year time step, a principled biological basis on which to base the choice is 
absent. These discrete time steps are “accidents of convention” or “occupational 
hazards” for the demographer. It would not be difficult to complicate the given sce-
nario further by including many other populations, each with its own unique census 
time. This difficulty is only compounded when focus shifts to the continuous varia-
tion on display in evolutionary scenarios. It is not, for instance, difficult to imagine 

14 It can be shown that lim
n→∞

(

1 +
x

n

)
n

x

= e . If x
n

=
r

1
= r , then lim

n→∞ (1 + r)
1

r = e . The discrete 
growth factor g becomes equivalent to the instantaneous rate of increase r when the time step is infinitely 
small. Remembering that λ = 1 + g and noting that g = r in the limit, it then holds that λ = 1 + r in the 
limit.  Replacing 1 + r with λ in the equation (1 + r)

1

r = e , we have e = (�)
1

r Raising both sides to the 
power of r yields er = �. Taking the natural logarithm of both sides gives us r = ln (�).



1 3

The arithmetic mean of what? A Cautionary Tale about the Use… Page 15 of 22 12

a situation where the only selectively relevant, heritable variation in a population 
turns out to be associated with a very large number of distinct and discrete times for 
reproduction. Moreover, it may be the case that no other division of the population 
into similarity classes is statistically more relevant to reproduction. In such cases, 
population biologists and demographers alike turn to a time-independent measure 
of growth rate: namely, the intrinsic or instantaneous rate of increase (r). We believe 
that this is the fulcrum on which many, if not most, sophisticated theoretical meas-
ures of fitness rest.

The preceding example demonstrates the explanatory primacy of the instantane-
ous or intrinsic rate of increase and, hence, the “derivative” nature of the finite rate 
of increase when comparing discrete growth rates for “uniform” populations (i.e., 
ones where there is no heritable trait variation) over unequal time steps. Since (by 
stipulation) these populations are not in genuine competition with one another, they 
do not form a genuine metapopulation in any theoretically interesting sense—only 
our demographer’s interest linked them. As emphasized at the outset, this simpli-
fied comparison of human populations is not a scenario of genuine interest for those 
measuring (relative) fitness. A relevant scenario for evolutionary biologists would 
involve a population consisting of at least two distinct heritable trait variants or char-
acter states. Recall, however, that competing trait variants are themselves charac-
terized as (sub)populations in evolutionary population biology. The procedure for 
measuring fitness does not differ fundamentally from that shown in our demog-
raphy-based example where the finite time step for population growth has been 
changed to permit direct comparison. Many cases of interest to evolutionary biolo-
gists require measuring the relative fitness of trait variants over unequal timescales. 
In fact, this so-called “timing of offspring” problem has served as a primary moti-
vation for more recent, sophisticated philosophical accounts of fitness (Pence and 
Ramsey 2013). The principal difference, then, between our example from demog-
raphy and an explicitly evolutionary scenario is that the fitnesses (growth rates) of 
trait variants (populations) must often be rescaled via their intrinsic rates of increase 
to facilitate comparative assessments of relative fitness. It goes without saying that 
there are more complex ways to formally model fitness, many of which are explic-
itly designed to address the scores of perturbing factors that might thwart accurate 
prediction. However, no matter how sophisticated these models may be, we believe 
that their functional forms are expansions of the foundational discrete and continu-
ous models for population growth. Continuous growth and overlapping generations 
are now recognized as the norm in nature and exacerbate the need for intrinsic or 
instantaneous measures of fitness. It is high time for more philosophers to accept 
this measure as fundamental even if the classic examples in the philosophical lit-
erature on fitness (featuring discrete reproductive schedules and implicitly ergodic 
processes) do not make this apparent.

While some mathematical sophistication is unavoidable considering the topic 
under discussion, the degree introduced may appear daunting to some readers. We 
have restricted ourselves to what many population biologists would consider the 
minimal basis for more sophisticated models (of which there are many). Since such 
reassurance will likely come as cold comfort for those who remain perplexed by 
the mathematical models that inform the fitness literature, let us draw this section 
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to a close with a concise summary of this seemingly excessive formalization. The 
mathematical models we deploy demonstrate three crucial points. The first of these 
is that the (exponential of the) arithmetic mean of log population size is necessar-
ily equivalent to the geometric mean number of offspring over a specific timescale 
(e.g., a generation). The arithmetic mean in this specific sense must, consequently, 
be a predictively efficacious measure of fitness whenever the geometric mean of off-
spring output is. This shows that the arithmetic mean (again, in the sense just noted) 
must, at least, be “on equal footing” with the geometric mean of offspring output 
when it comes to being a summary measure of fitness in those cases that have tradi-
tionally preoccupied philosophers. The second point of importance is that both the 
exponential of the arithmetic mean change in log population size and the geomet-
ric mean of offspring output are measures of fitness as growth rate. The former is 
applicable to exponential increase in continuous time, and the latter for geometric 
increase in discrete time. Restricting focus to the cases discussed by Beatty and Fin-
sen (1989), Brandon (1990), and Sober (2001), which parallel the case we present in 
Table 1, it is unnecessary to distinguish these measures. Calculating one yields just 
as good a predictor of evolutionary success (relative differential representation) as 
the other. However, all the cases they discuss involve reproduction over discrete time 
steps with no generational overlap. Such cases represent only a minority of those in 
nature. Most organisms, humans included, exhibit overlapping generations and con-
tinuous population growth. Therefore, in the majority of cases, we need a measure 
of fitness as growth rate that enables us to make principled comparisons of repro-
ductive output over discrete but unequal time steps (e.g., distinct “census times”). 
Resolving this difficulty requires a measure of fitness as instantaneous or intrinsic 
growth rate (e.g., Malthusian fitness), which does not arbitrarily privilege one tem-
poral period of measurement over another. The third point is just that the more gen-
erally applicable, continuous time measure of fitness as intrinsic growth rate must be 
measured via the arithmetic mean since it involves a log scaled value.

Why does this matter?

Many philosophers of biology understand that population growth is a multiplicative 
process which lends to measurement via the geometric mean. There is no shortage 
of examples demonstrating this. Peter Godfrey-Smith, for instance, states that “[w]
hen the outcomes of trials are combined in a multiplicative way, the predictor of 
long-term success in a representative sequence of trials is not the arithmetic mean 
payoff […] but the geometric mean payoff” (1996, p. 222). Further, few (if any) of 
the central contributors to the philosophical literature on fitness are oblivious to the 
fact that ignoring higher mathematical moments of a probability distribution over 
possible offspring can adversely affect prediction. Here is but a small sample of their 
respective appreciation:

What Gillespie, and this example, show is, in effect, that expected offspring 
contribution is just one component of fitness, variance is another. (Beatty and 
Finsen 1989, p. 25)
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Beatty and Finsen (1989) show that the skew of a distribution of offspring 
numbers, as well as the mean and variance, also matters. That is why in the 
above definition of A*(O,E), the function f(Ε,σ2) is a dummy function in the 
sense that the form it takes can be specified only after the details of the selec-
tion scenario have been specified. (Brandon 1990, p. 20 [footnote 16])
In principle, fitness may depend on all the details of the probability distribu-
tion. (Sober 2001, p. 34)
[C]areful reading of some of Gillespie’s papers shows that even when he pro-
poses that fitness can be taken to be a function of expectation and variance, 
complex functions of higher statistical moments would still be needed to pro-
vide a precise definition of fitness. (Abrams 2009, pp. 752–753)

Considering such acknowledgments, it is worth emphasizing that nowhere in the 
foregoing has it been our intention to suggest that Beatty and Finsen, Brandon, or 
Sober were (or are) completely unaware of the mathematical equivalency we high-
light. In fact, on rare occasions, there appears to be some recognition of it. For 
example, Sober (2001, p. 34) alludes to the findings of Lewontin and Cohen (1969), 
who make it explicit that “if we consider a continuous time model, the discrepancy 
between geometric and arithmetic mean disappears” (p. 1059). Rather, our broad 
aim is to correct a misunderstanding that threatens to link otherwise sophisticated 
treatments with less nuanced counterparts in the literature. Successfully accom-
plishing this requires debunking the near consensus view that the geometric mean is 
often better than the arithmetic mean of log growth rate for tracking fitness. This is 
simply not the case when fitness is characterized as growth rate.

Measurement problems arise when fitness is reified as number of offspring. The 
geometric mean number of offspring provides a predictively adequate measure of 
fitness when reproductive contribution occurs over discrete time steps. But it is only 
under very restrictive assumptions (non-overlapping generations and no intra- or 
intergenerational variance) that expected reproductive output over consecutive gen-
erations can be a predictive measure of fitness. Fitness construed as a continuous 
growth rate is a more general measure. It also suffices for tracking multiplicative 
change over time. However, fitness is not measured by way of the geometric mean 
when continuous growth rates are used. Instead, one must use the arithmetic (mean 
of) growth rate in such cases. From that, one could potentially recover the geometric 
mean of offspring output. Because it is calculated as an arithmetic mean in con-
tinuous time, intrinsic growth rate (or Malthusian fitness) can assume any frequency 
of compounding, including continuous compounding. It thus has the flexibility to 
accommodate any change of temporal scale when assessing (relative) reproductive 
performance. Fitness qua growth rate thereby has broader explanatory scope and 
application.

Let us momentarily pause to take stock. Conceiving of fitness as a continuous 
growth rate presents several distinct advantages. First, its generality promises to 
unify measures of fitness that are otherwise potentially inconsistent. Beatty and Fin-
sen (1989) and Sober (2001) cautioned that short-term selective advantage does not 
entail long-term selective advantage. They sought to distinguish a short-term notion 
of “expected reproductive output” (over a single time step) from a longer-term notion 



 P. Takacs, P. Bourrat 

1 3

12 Page 18 of 22

of “expected reproductive success” (over more than a single time step). Accordingly, 
an individual might have high expected reproductive output but relatively low mul-
tigenerational reproductive success (e.g., as with the progenitor B-type individual in 
Table 1). Measuring fitness as (relative) growth rate circumvents the need for such a 
distinction. Doing so has the capacity to capture the average reproductive contribu-
tion for members of a growing lineage at any point in the (not too distant) future. 
If fitness is to be commensurate with evolutionary success, any metric that tracks 
such success should correspond to fitness. For instance, in the example offered by 
Beatty and Finsen (1989), as well as in Table 1 above, we observe a two-generation 
cycle for the variance in number of offspring. By computing fitness in terms of the 
expected number of grand-offspring, we can track long-term evolutionary success. 
However, this measure does not represent a general proxy for fitness. That is, we 
could have found ourselves in a situation involving a cycle of three or more gen-
erations. There is no principled reason for favouring the number of grand-offspring 
over the number of offspring or, for that matter, any other time step as the appropri-
ate one over which to compute. This difficulty can arise despite assuming discrete 
generation times and deterministic cycles in the intergenerational variance. When 
those assumptions are not met, the problem of which timescale to use when comput-
ing fitness becomes even more substantial (Doulcier et al. 2021). However, measur-
ing fitness as a growth rate evades such problems.

The second advantage is closely related to the first. While some species (e.g., 
periodical cicadas in the genus Magicicada) have readily delineated reproductive 
schedules and generation times, others (e.g., Homo sapiens) do not (Williams and 
Simon 1995). In the latter type of case, which is arguably the norm in nature, there 
lingers the ever-present danger that fitness assessments will be undertaken over arbi-
trary and, thus, possibly erroneous durations (Ahmed and Hodgkin 2000; Crow and 
Kimura, 1956). As emphasized by some (Pence and Ramsey 2013), this concern can 
be allayed if one shifts from a generational timeframe and frequency of measure-
ment to an absolute (continuous) timeframe. Yet, again, this advantage is only avail-
able to continuous time models that measure fitness as a constant growth rate, which 
is, in turn, calculated as the arithmetic mean change in log population size.

In what substantive sense, then, does the demonstration of mathematical equiva-
lence amount to anything more than the satisfaction of an idle curiosity? We have 
already noted how use of the arithmetic mean on a log scale can sidestep prob-
lems associated with inconsistency or arbitrariness of timescale for measurement. 
Uncritical deference to the geometric mean over the arithmetic mean as a measure 
of fitness also threatens to gloss over more fundamental ontological and explanatory 
concerns. Use of the geometric mean as a proxy for fitness relies on reproductive 
output measured in discrete time steps; therefore, its range of explanation is also 
much constrained. More specifically, its application presumes that reproducibility 
of a trait type (character state) entails the production of distinct (token) descend-
ants. However, organisms that physically increase in size but produce no discernible 
offspring, such as the quaking aspen (see Bouchard 2008, 2011), accordingly can-
not undergo evolution via natural selection (Van Valen 1976, 1989). The geometric 
mean demands a “full-blooded” sense of reproduction insofar as it implies that natu-
ral selection cannot occur unless there is, at minimum, fission of a focal progenitor. 
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Yet, curtailing explanatory scope in this way is, to put it mildly, questionable. Bio-
logical entities exhibiting variations that enable them to persist more reliably than 
competitors (e.g., neurons less prone to apoptosis or neuronal configurations rein-
forced via synaptic pruning; see Garson, 2019), albeit without any subsequent physi-
cal growth or production of offspring, are similarly excluded.15 This view of natural 
selection as involving persistence and growth in addition to reproduction has been 
systematically defended by Frédéric Bouchard (2004, 2008, 2011). The foregoing 
types of biological entity are sometimes depicted as being non-paradigmatically 
Darwinian (Godfrey-Smith 2009) or simply mentioned in passing as problematic 
outliers for selective explanation.16 The continuous growth rate framework for fit-
ness offers the quantitative means to (sensibly) withhold such contentious qualita-
tive judgments and naturally provides some grist for Bouchard’s mill.17 The abstract 
notion of growth encompasses not only cases where entities reproduce and merely 
persist but also cases where entities expand.

The fitness qua growth rate framework provides a way to extend selective expla-
nation to what are otherwise peculiar biological entities by presenting us with the 
means to measure the general phenomenon of (relative) growth. Growth in popula-
tion size (abundance) is just one manifestation of this; others include an individual’s 
growth in terms of physical size or a biological entity’s ability to persist. Measur-
ing fitness via growth rate in the latter, less paradigmatic cases can make fitness a 
property of an individual. This might be reason enough for disapproval in the minds 
of some. However, a sophisticated attempt to develop this framework is what, for 
example, Charles Pence and Grant Ramsey (2013, pp. 864–867) have already pro-
vided via deriving a measure for token fitness (i.e., fitness as a measurable prop-
erty of individual organisms) from adaptive dynamics (for an introduction to this 
approach, see Brännström et al. 2013). One cannot begin to understand the project 
that they and others have undertaken unless fitness is refashioned as pertaining to 
the growth rates of (sub)populations. Some (Pence and Ramsey 2013, 2015; Ramsey 
2006) argue for the explanatory priority of lineages of descendants engendered by a 
focal individual, while others contend that unifying a lineage under the auspices of 
a trait variant provides a more faithful characterization of evolutionary explanation 
(Sober 2013). Sensible disagreements no doubt abound. But the ascriptive flexibility 
on which debate turns presupposes that population level parameters in ecology (e.g., 
population growth rates) must relate to evolutionary parameters (e.g., fitness).

15 In other words, the surviving or persisting entities persist through time at a positive relative growth 
rate (higher relative fitness), while dying or unreinforced competitors simultaneously exhibit a nega-
tive relative growth rate (lower relative fitness). Aspects of the immune system, such as antibody selec-
tion (see Hull et al.  2001), might also make for good examples of such persistent entities and, thus, fall 
within the purview of the proposed fitness qua growth rate framework.
16 We recognize that the absence of a clear population in some settings can create difficulties for the 
application of a Darwinian reasoning in those cases. However, several besides Bouchard have argued 
that the idea of evolution by natural selection can be applied fruitfully in some of these non-paradigmatic 
cases (Bourrat 2014, 2015; Papale, 2020; Doolittle 2014, Lenton et al. 2021).
17 Of course, there may remain sensible disagreement about how theoretically interesting or prevalent 
such cases of natural selection are. However, the point at stake here is one of whether these sorts of enti-
ties are, in fact, subject to evolution via natural selection.
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Conclusion

Beatty and Finsen (1989), Brandon (1990), and Sober (2001) provided noteworthy 
corrections to early formulations of the PIF. Although clearly acknowledging that 
other moments of a probability-weighted offspring distribution are relevant to char-
acterizing and measuring fitness, the geometric mean was nevertheless singled out 
as a particularly important summary statistic or proxy measure. This was predomi-
nantly a consequence of the toy examples that were used to show the perils of its 
neglect. Such examples were deliberately simplified ones that rely on discrete gen-
eration times and, consequently, lend to proper measurement via the geometric mean 
of offspring output. An unwelcome consequence of this is that many now assume 
that the arithmetic mean cannot in any sense be an adequate measure of fitness. Not 
only is this assumption unfounded—it is also potentially misleading in theoretically 
substantive ways. When assessing competing trait types or individuals to generate 
predictive measures of evolutionary trajectory, theoreticians typically compare the 
relative growth rates of competing (sub)populations distinguished by trait type. The 
most general mathematical context for assessing growth rate is in continuous time 
on a logarithmic scale. Crucially, it is the arithmetic mean that provides the cor-
rect measure on that scale. The discrete generation timeframe and geometric mean 
measure that accompanies it is a derivative case of this more general framework. If 
the geometric measure is taken as basic, we run the risk of reifying reproductive out-
put and limiting ourselves to a conception of fitness that appears to be unjustifiably 
truncated. Thus, clarifying how and why the arithmetic mean can be an appropriate 
measure of fitness removes at least one obstacle toward what is perhaps a more unif-
icatory theory. What devils there may be will undoubtedly be found in the details. 
For now, let us begin by recognizing why using arithmetic mean to characterize fit-
ness should not be unduly de-emphasized or ignored.
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