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Abstract

Heritability is routinely interpreted causally. Yet, what such an interpretation amounts
to is often unclear. Here, I provide a causal interpretation of this concept in terms
of range of causal influence, one of several causal dimensions proposed within the
interventionist account of causation. An information-theoretic measure of range of
causal influence has recently been put forward in the literature. Starting from this
formalization and relying upon Woodward’s analysis, I show that an important prob-
lem associated with interpreting heritability causally, namely the locality problem,
amounts, at least partly, to a low invariance and low stability between the geno-
type/environment and the phenotype of individuals. In light of this, I plead for a
causal interpretation of heritability that takes the notions of Woodward’s invariance
and stability into consideration. In doing so, I defuse naive causal interpretations of
heritability.

Keywords Heritability - Causality - Causal specificity - Causal influence - Locality -
Invariance - Stability

1 Introduction

When it comes to estimate whether variations in genes as opposed to variations in
the environment are the main cause of the observed variations in a phenotype, the
classical approach is to estimate whether this phenotype is heritable. Yet, heritability
is a statistical notion, and although it is routinely interpreted causally by scientists and
the public, this interpretation has been controversial for the last 40 years (Lewontin
1974; Taylor 2006; Lynch and Bourrat 2017; Sesardic 2005; Tabery 2014; Tal 2009;
Taylor 2010). Many authors have claimed, sometimes using disparaging language, that
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the use of heritability estimates to approach causality is inappropriate especially in
the context of human behavioral genetics (for reviews including the historical context
of these claims see Sesardic 2005, pp. 23-27; Tabery 2014, Chap. 3; Taylor 2006).
Others, while often recognizing the limits of such a use, have been less concerned about
this causal interpretation (e.g., Sesardic 2005; Tal 2009). At the heart of heritability
analyses and their interpretation(s) thus lies the question of causation.

The philosophy of science literature on causal explanations has overwhelmingly
adopted the interventionist account of causation (Woodward 2003, 2010, 2013).
Within this account, a variable C is regarded as a cause of a variable O, if an ideal
intervention! changing the value C can produce a change in the value of 0. This
is the minimal criterion of causation within this framework. An ideal intervention is
defined as a change in the value of a variable—here C—that produces no other change
at the time of the intervention (Woodward 2003, 2010). Given the prominence of the
interventionist account of causation, it is worthwhile investigating the relationship
between causality and the notion of heritability from the perspective of this account.
It might not only provide a better way to understand in what sense genes or genotypes
cause phenotypes when heritability is positive, but also allow comparison of causal
explanations originating from heritability studies with causal explanations from other
sciences. Having a clearer understanding of the links between causation and heritabil-
ity is also important in the context where claims of genes ‘causing’ such and such trait
are very commonly found in popular media. The interventionist account of causation
has recently been used to investigate the problem of gene-environment covariance in
heritability studies by Lynch and Bourrat (2017). However, Lynch and Bourrat did not
provide a general account of heritability within this framework. This is the aim of this
article, which can also be regarded as an extension of the analysis provided by Oftedal
(2005).

One can distinguish at least two different types of philosophical issues associated
with the topic of heritability. The first one concerns the concept(s) of heritability,
what I will refer to as theoretical ‘heritability’, and how they should be understood. It
aims at answering questions of the following type: “Given a formal characterization
of heritability how should one interpret it?”, “Is a causal interpretation of heritability
warranted and if yes, what sort of causal interpretation, and under what conditions does
this interpretation become restricted (and in what ways) or break down?”” The second
type of issue concerns the way(s) under which one might estimate or measure theoret-
ical heritability. Because we do not have an a priori knowledge about the theoretical
heritability, we need to find situations under which, following some assumptions, we
can get some confidence that the measure we make corresponds to the theoretical
value. This second issue is one of statistical inference from observed data or exper-

! Jdeal interventions should be distinguished from experimental or physical interventions in the sense
that they can correspond to changes that are not necessarily physically possible. For instance, an ideal
intervention can be an intervention on the mass of the moon, while keeping the same gravitational force
between the Earth and the Moon. It would be impossible in practice to do so, but that does not constitute a
problem from the interventionist perspective. Woodward (2013), among others, provides some justifications
for the idea that interventions need not be physically possible. By ‘intervention’ in this paper, I will mean
‘ideal intervention’.

2 Tuse ‘O’ instead of ‘E” for characterising a generic effect variable to avoid the confusion with the variable
environment that will be used later on.
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iments. There are many ways to estimate heritability and some problems associated
with the fact that different estimates make different assumptions and sometimes do
not correspond to the same concept. Thus the two issues are intertwined. Yet, in this
paper, following the same strategy as in Taylor (2012), I will be mostly concerned
with the first type of issue.

I use formal tools developed within the interventionist account of causation to
delineate the scope and limits of the causal interpretation of theoretical heritability.
Although focusing on this issue might look at first more remote from the practice of
scientists using at least one of the available heritability concepts, I follow Lynch and
Walsh (1998, p. 171) in their view when referring to one such concept, namely narrow
heritability (h2), that: “[p]roviding an explicit definition eliminates the ambiguity
of the usage of A% in theoretical contexts, but highlights the practical problems of
estimation.” The analysis provided here is made in the spirit of Lynch and Walsh’s
remark.’

Concretely, this means that I will not be concerned with the way the theoretical
measures presented in this paper might be estimated in a real study. That said, the
toy example I present will aim at being more realistic than the typical examples used
in the philosophical literature, such as the ‘redhead example,” in which the notion of
gene-environment covariance and its relation with heritability is illustrated by vari-
ous thought experiments in which redheaded or blue-eyed children are subjected to
different abuses (see Sesardic 2005, pp. 90-93). It should be furthermore noted that
although obtaining accurate estimates of heritability of human behavioral phenotypes
is a very challenging task, especially regarding the traits studied in behavioral genetics,
behavioral genetics is only one of the many contexts in which the notion of heritability
is used. Many of these contexts do not have the same limits for estimating heritability
more accurately because experiments are possible.

The outcome of my analysis is a sophisticated causal interpretation of heritability
which is in stark contrast with some naive interpretations. By ‘naive causal interpreta-
tion’, I mean a causal interpretation in which genes are regarded as causing a phenotype
without considering the population context in which this interpretation is made. I show
that although the worries coming from the opponents of a causal interpretation are jus-
tified, the limits they identify are not specific to heritability, a point previously made in
passing by Tal (2009, p. 91). They pertain to a more general problem with the notion
of causation as it is used by scientists. In fact, applying their arguments with parity
would lead to the conclusion that most relationships considered as causal in a wide
range of special sciences are after all not causal. I argue that interpreting heritability
causally requires some precautions, which the formal version of the interventionist
account recently outlined makes explicit (see Korb et al. 2011; Pocheville et al. 2017,
Griffiths et al. 2015).

The paper will run as follows. In Sect. 2, I present the notion of range of causal
influence, a particular kind of causal specificity, as a way to distinguish causes that have
the highest degree of control over an effect variable, from those that do not (Griffiths
et al. 2015). Within this approach, it has been proposed that one needs a notion like

3 More generally, postulating theoretical parameters and then attempting to estimate them from the available
data is a general problem that the branch of statistics known as “parameter estimation” attempts to solve.
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range of causal influence, where causes with a larger range of causal influence enable
one to better manipulate their effects (Woodward 2010). In Sect. 3, I recall the classical
definition of heritability, and in Sect. 4, I show that heritability is related, when using my
causal interpretation, to one particular measure of range of causal influence involving
the distinction between actual and potential difference makers after Waters (2007).
In Sect. 5, I discuss what is known as the problem of locality (Sesardic 2005, pp.
75-80 ): heritability estimates obtained in one population cannot be extrapolated to
other populations. Ever since Lewontin (1974), the problem of locality, among other
problems,* has been one important reason to argue against a causal interpretation
of heritability. I demonstrate that locality results from particular features of causal
relationships in some heritability studies, namely, different distributions for the causal
variable, a low causal invariance, and/or a low stability. From there, I argue that if one
were to regard locality as an important obstacle for interpreting heritability causally,
one would have to, by the same token, dismiss many causal claims in the special
sciences. I plead for a view in which causal claims are contextualized so that they may
be well-interpreted.

2 Range of causal influence

Suppose one wants to answer the question: “why do some humans develop skin can-
cer?”. One proposes two possible explanations citing two different putative causes:
either individuals have had a prolonged exposure to solar ultraviolet (UV) radiation,
and/or they have a particular genotype prone to skin cancer. Both explanations might
appear equally relevant for answering the question. In fact, it has been shown that both
intermittent solar UV exposure, particularly in childhood (Gandini et al. 2005a) and
genetic factors (Hayward 2003) are involved in some forms of skin cancers such as
melanoma, the type of skin cancer with the highest morbidity.> Were it scientifically
established that one of the two causes is more important for explaining the develop-
ment of skin cancers, the interventionist minimal criterion of causation presented in
the Introduction, by merely stating that both are causes, would not permit to choose
between them. This is because there exist interventions on both variables that would
lead some individuals to develop skin cancer or prevent them from developing it.

Considering this, any measure of the difference in importance or influence for
each cause involved in the prevalence of skin cancer will be useful.® Recent formal
approaches to causation have married the causal modeling approach (see Pearl 2009)
with information theory to produce such a quantitative assessment of causal influence
(Korb et al. 2011; Griffiths et al. 2015; Pocheville et al. 2017). Here I present in broad
strokes Griffiths et al.’s account and extend it for cases in which information theory is
not best suited.

4 For other problems see for instance Tabery (2014), Sarkar (1998) and Northcott (2006, 2008).

5 For instance some mutations on the genes CDKN2A and CDK4 have both been associated with melanoma
(Begg et al. 2005; Hayward 2003) and some families are more prone to develop skin cancers than others
(Gandini et al. 2005b).

6 The analysis of variance is classically regarded as providing precisely this, but its causal interpretation
has been contested (e.g. Northcott 2006).
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They start from the notion of causal specificity. Causal specificity is an ambiguous
notion since it can refer to at least two distinct dimensions of causal relationships
identified by Woodward (2010). The first dimension refers to the extent to which, on
average, considering a relationship that satisfies the interventionist minimal criterion
of causation, one intervention on the causal variable corresponds to a precise change in
the effect variable. In other words it refers to the extent to which a mapping between
causal values and effect values is bijective, namely that to one value of the causal
variable corresponds exactly one value of the effect variable. Woodward (2010, p.
310) refers to this as the “one cause-one effect” notion of causal specificity. I will refer
to it as “one-to-one specificity”. The second dimension refers to the range of causal
influence a variable exerts on another variable. As first showed by Woodward (2003,
pp- 218-220), this notion of causal specificity is closely related to Lewis’ (2000) notion
of influence (see also Weber 2006 and Waters 2007 for a similar use). The basic idea
underlying this dimension of causal specificity is that the more influential a causal
variable C is for a putative effect O, the higher the number of possible interventions
on C that lead to changes in the values of O that no other intervention on C would
lead to. I will refer to this second dimension, to which Griffiths et al. give a precise
measure, as “range of causal influence” to avoid any ambiguity.’

Given a particular relationship C — O satisfying the interventionist minimal cri-
terion, the probability distribution for C and the conditional probabilities of O for
each value of C, one can use information theory to measure the range of causal influ-
ence of C on O. Griffiths et al argue that the right information theoretic measure to
approach the range of influence is the amount of mutual information that interventions
on C carry about O. I refer to this measure as “mutual causal information.”® which
is calculated as follows:

1(0;C) = H(0)— H(0 | 0), (1

where 1(0; 6) is the mutual causal information from C to O, H(O) is the entropy
of O, that is the amount of uncertainty on O, and H(O | C) is the entropy of O
knowing the value set for C (the hat on a C represents the fact that its values are set
by ideal interventions), that is the amount of uncertainty remaining on O when we
already know the value set for C. For more details on this measure and the notions of
entropy and conditional entropy see Griffiths et al. (2015); for a longer yet accessible
introduction to information theory see Stone (2015).

Information theory is best suited for nominal variables, that is variables with which
no form of mathematical computation can be performed (Stevens 1946). Yet, in biology
variables are generally quantitative, for which the analysis of variance provides quan-
tities corresponding to entropy and mutual information (Garner and McGill 1956). A
version of range of causal influence for quantitative variables reads:

V(0 :C)=V(0) -V |OC), )

7 For in-depth treatments of these two notions of causal specificity see Bourrat (2019a,b).

8 For more details on the properties of this measure see Griffiths et al. (2015) and Pocheville et al. (2017).
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Fig. 1 A causal diagram representing the causal dependencies between variables involved in the skin
cancer example (error terms are ignored). The variable Genotype represents the genotype of an individual;
the variable UV measures the monthly highest UV levels on the global UV index in the population; the
variable Cancer measures the probability for an individual to develop a skin cancer during a fixed period
of time

Cancer

Genotype

where V(O : C ) represents the amount of variance in O explained by the variancein C,
with values of C being set by interventions, V (O) is the variance of O, and V (O | C )
is the variance of O knowing the value set for C 9 Note, and this is important, that
Eq. (2) encompasses—in the sense that they are inseparable—both a measure of the
range of causal influence and a measure of what one might call the “causal strength”
of the relationship. Causal strength measures the extent to which intervening on C by
one unit, produces a change in O by x units, where ‘x’ measures the strength of the
association. One difference between Eqs. (1) and (2), is that the measure obtained in
the former is in bits while the latter is in the unit of the effect variable (more on the
difference between the two equations below).

Take the skin cancer example. To operationalize the range of causal influence
measure [whether using Eq. (1) or Eq. (2)], one first needs to specify the causal
dependencies at stake. These dependencies can be represented on a causal diagram
(see Fig. 1, since I am not concerned here with statistical inference, error terms are
ignored). Let us suppose that each value of the variables (either nominal or quantita-
tive) Genotype and UV can be given a probability distribution (or probability density
function in the case of quantitative continuous variables) and that we know the con-
ditional probabilities of the variables Cancer for each value of Genotype and UV.
With this in place, one can then calculate the range of causal influence between the
two cause-effect pairs of variables using Griffiths et al’s measure (Eq. 1) or its cor-
responding measure using variances (Eq. 2). The ranges of influence obtained for
Genotype — Cancer and UV — Cancer can then be compared to decide which one
of the two causal variables has a greater range of causal influence.

To see this in more detail, let us assume that the variable Genotype has only four
possible values with equal probability (0.25), namely {G1, G2, G3, G4}. Based on the
global UV index scale (World Health Organization 2002), to which I have removed
the ‘extreme’ value to make the example simpler, we assume that the variable UV has
also four values with equal probabilities (0.25) {Low, Moderate, High, Very High},
each corresponding to a risk of harm from unprotected sun exposure. Finally based
on a realistic worldwide incidence rate of melanoma (see Stewart and Wild 2014, p.
496), we assume that the variable Cancer has also four equiprobable values (0.25),
namely {1 x 107*,2 x 107*,3 x 1074, 4 x 1074}.1°

9 1 thank Arnaud Pocheville for proposing this measure.

10 Thjs example uses some nominal variables and will treat quantitative variables as if they were nominal.
Tlustrating the notion of range of causal influence is handier with nominal rather than quantitative variables,
since, as mentioned above, Eq. (2) provides a combined measure of range of influence and causal strength.
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To be able to calculate the range of causal influence, given that grain of descrip-
tion,!! on the one hand, of UV on Cancer, and on the other hand, of Genotype on
Cancer, we need to know the probability for each value of Genotype and UV to be
associated with each value of Cancer. If we adopt the probabilities presented in the
diagrams (a) and (b) of Fig. 2 (see the caption to understand how these probabilities are
calculated) between the two relationships of the causal diagram presented in Fig. 1, we
can see that intervening on the variable UV carries more mutual causal information
on the variable Cancer than does the variable Genotype. Indeed, we find a mutual
causal information of about 0.81 bits from Genotype to Cancer and 1 bit from UV
to Cancer.'> Concretely, this means that intervening on the value of Genotype has a
lower probability to change the value of Cancer than intervening on the value of UV
does. One can get an intuitive understanding of this by noticing that there are less
values to choose from with Genotype than with UV and that there are, on average,
more arrows leaving the causal variable Genotype than the causal variable UV. Had
Genotype, UV and Cancer all been quantitative variables using Eq. (2) and a similar
reasoning, we would find that the amount of variance of Cancer explained by inter-
vening on UV is higher than when intervening on Genotype. This last remark comes
however with one caveat, namely that the difference between two adjacent values for
the causal effect variables should be the same across the range of possible values
for these quantitative variables, different interventions should produce proportionate
effects in a given direction (the causal relationship between the variables should be
linear), and the causal strength of Genotype and UV on Cancer should be the same.
This comes from the fact that with quantitative variables, that is variables of which the
values on which some mathematical operations can be made, the dimension of causal
strength is at play. This dimension does not appear with nominal variables because
all one can say about the values of such variables is that they are different (one can
only say that the color ‘red’ is different from the color ‘green’; there is not a sense
in which green is higher or lower than red). One consequence of this is that changing
the values toward which the arrows point in the diagrams (a) and (b) of Fig. 2, will
not change the value for range of causal influence obtained with Eq. (1) (whether the
variables are nominal or quantitative). By assuming that the causal strength of the
relationships Genotype — Cancer and UV — Cancer are linear and of the same
strength, across the whole range of possible values for causes, means that, under these
assumptions, causal strength is not a factor to take into consideration when comparing
these relationships since it is the same for all the intervals of the variables considered.

' Note that there is in principle an infinity of ways in which a variable can be discretised, depending on the
grain of description one uses. Starting from Yablo’s (1992, p. 4) example of a pigeon pecking because she
was exposed to a red stimulus or a scarlet stimulus, Pocheville et al. (2017) provide a criterion to choose the
grain of description that is appropriate for providing a proportional explanation, by discretising the variable
involved in the relationship. Proportionality is a dimension to take into consideration for providing adequate
causal explanations as emphasized by Woodward (2010). Pocheville et al call their criterion ‘proportionality
constraint’ and define it as follows: “Given an effect variable O that is a target of intervention or causal
explanation, a causal variable C should be discretised so as to minimise the entropy of C whilst maximising
specificity for O” (p. 272, ’E’ has been replaced by *O’). I will assume throughout the manuscript that the
grain of description satisfying the proportionality constraint has been chosen.

12 For a short tutorial on how to calculate the mutual information between two variables see Griffiths et al.
(2015).
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uv Cancer Genotype Cancer
(a) Causal diagram of the range of (b) Causal diagram of the range
causal influence of the variable UV of causal influence of the variable
on the variable Cancer. Genotype on the variable Cancer.

Fig.2 Causal diagram representing the causal relationships between Genotype/UV and Cancer (errors terms
are ignored). In all the diagrams presented in this figure, Figs. 3 and 4, equiprobability for the values of C is
supposed. Each arrow leaving from one value of C represents the probability of this value causing the value
of O it points to. If only one arrow leaves a given value of UV or Genotype, the conditional probability on
this value is 1 (e.g., for the arrow leaving the value “high” of UV). If more than one arrow leaves a value of
UV or Genotype, then we suppose that each arrow has the same probability conditioning on this value (e.g.,
0.5 for arrows leaving the value “low” of UV connecting to two values of Cancer, and % for the arrows
leaving the value G| connecting to three values of Cancer)

With the notion of range of causal influence now presented, in the next three sec-
tions, I turn to the relation between this notion and heritability. After having briefly
presented the classical definition of heritability in the next section, I show in Sect. 4
how heritability relates to the notion of range of causal influence. In Sect. 5, in light of
the interventionist approach developed in the preceding sections, I discuss one famous
problem within the literature on heritability, namely the problem of locality. More par-
ticularly, to treat this problem, I appeal to the notions of causal invariance and stability
developed within the interventionist account, which I briefly present.
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3 Heritability

The notion of heritability originated at a time where DNA had not yet been discovered
to be the material substrate for genetic information.'® In consequence, the statistical
techniques underlying its estimation do not rely on any measure of genetic or envi-
ronmental physical factors, so that even the words ‘gene’ and ‘environment’ can be
dropped from the analyses (Taylor 2012). Yet, in the Introduction I referred to esti-
mating heritability as a way to elucidate whether genes or the environment are causes
of phenotypic change, which is how it is now often interpreted. This difference might
lead the reader to question the validity of an approach to heritability grounded within
the interventionist account of causation which precisely supposes intervening on such
factors when it is supposed that no such factors can be intervened upon in the classical
methods. These two views on heritability might even be regarded as incommensurable
paradigms.'4

I have two things to respond to this. First, as mentioned in Footnote 1, there is in
principle no obstacle to applying the interventionist account on variables that could
not physically be intervened upon. Second, in the last twenty years, a lot of effort has
been carried out to create a bridge between these two paradigms with the development
and use of molecular biology methods to physically ‘locate’ genetic information and
develop statistical methods in consequence, to get new estimates of heritability, such
as genome-wide association studies (GWAS) from which single-nucleotide polymor-
phisms (SNPs) can be extracted (see Visscher et al. 2008; Bourrat and Lu 2017; Yang
et al. 2010)."> Although, as emphasized by a reviewer, a direct translation between
traditional approaches to heritability and those relying on GWAS might not be as easy
to make as believed by some such as Visscher and Goddard (2019), I will assume that
such a link can be drawn.

This remark to the side, there exist several definitions of theoretical heritability
and several ways to estimate it (see Falconer and Mackay 1996; Lynch and Walsh
1998; Bourrat 2015; Downes 2009; Godfrey-Smith 2009; Jacquard 1983; Sarkar 1998;
Taylor 2012; Tal 2009). To avoid confusion, following the footstep of others (see
Lynch and Walsh 1998; Taylor 2006, 2010) it is important to be clear about which
concept [ will refer to here. A useful starting point in this literature, is the definition of
heritability as the proportion of phenotypic variance that can be attributed to genetic
variance (Falconer and Mackay 1996, p. 160). This definition follows a linear model in
which the phenotype of an individual (P) is the dependent variable of one independent
variable, namely the genotype of this individual (G), and a combined deviation due
to the environment, genotype-environment interaction and noise (E),' of which the
mean is 0:

13 See for instance Fisher (1918) and (Wright 1920) for early uses of the concept of heritability. Note that
the origin of the term ‘heritability’ itself is debated (see Bell 1977).

14 This point has been raised by an anonymous reviewer.

15 For more on taking this approach with heritability and how to frame it within the interventionist account,
see Bourrat (accepted).

16 1n a situation where it is assumed there is no genotype-environment interaction and no noise, E is the
deviation due to the environment.
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P=G+E 3)

From Eq. (3) and the further assumptions that there is no correlation and no inter-
action between G and E, we can deduce, following the properties of variances, that
the phenotypic variance in a population is equal to the sum of the genotypic variance
V(G) and environmental variance V (E ):17

V(P)=V(G+ E)=V(G)+ V(E) )
The (broad sense) heritability of P (H 2 is then defined as the ratio of V (G) on V (P):

A

=V )

The variance of a variable is a statistical measure of the dispersion of that vari-
able’s values in a population. Heritability is consequently a statistical measure, but
it is often interpreted causally as the level of causal influence of the genotype on
the phenotype. The move from a statistical description to a causal interpretation is
quite straightforward in the linear model proposed above in which G and E make
independent contributions. Using the casual diagram in Fig. 1, one dimension of cau-
sation corresponds to the relative weight of the arrow going from Genotype to Cancer,
when compared to the arrow going from UV to Cancer. There are important problems
associated with a causal interpretation when the assumptions of no gene-environment
correlation and interaction are violated (Lewontin 1974; Lynch and Bourrat 2017,
Sesardic 2005; Tal 2009, 2012; Taylor 2006, 2010; Moffitt et al. 2005). Tal (2012)
provides a useful method to account for the extent to which this interpretation can be
given in the contexts where gene-environment covariance and interaction are impor-
tant factors. In this section and most of the paper, I consider the simplest linear case.
I will come back to the issue of linearity in Sect. 5.

Note also that I assume here that G corresponds to Genotype, E corresponds to UV,
and P corresponds to Cancer. Such an interpretation is not benign. First, it implies a
concept of genotype used as one corresponding to a particular material substrate, here
the mutations associated with the skin cancer. This is however not the notion of the gene
classically used in quantitative genetics, which rather corresponds to an informational
notion of the gene which has no particular material substrate. The distinction between
these two conceptions of the gene, namely the informational and the molecular notion,
as well as the possible tensions resulting from an ambiguous use of the terms ‘gene’
or ‘genetic’ has been pointed out numerous times in the literature (e.g., Taylor 2009,
2010, 2012; Griffiths and Neumann-Held 1999; Griffiths and Stotz 2013; Bourrat and
Lu 2017; Lu and Bourrat 2018). Second, for similar reasons, interpreting £ as UV
implies that there would be no other directional physical factors in the environment
varying between genotypes that would be involved in the development of skin cancer.

17 The terms ‘genotypic variance’ and ‘environmental variance’, though canonical, can be confusing.
The reader should understand them as ‘variance in phenotype attributed to genotype variation” and ‘to
environmental variation’, respectively (see Taylor 2006, 2010, 2012, for discussions of the sense in which
these terms can be confusing).
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This should, of course, only be regarded as an idealization (which I will relax later
on). In the particular examples given in Fig. 2, because the relationship between the
causal relata are indeterministic (to one causal value can correspond several effect
values) some part of the variation in £ comes from the background which can be
regarded as noise. Nevertheless considering the opening remark of this section these
assumptions do not pose any particular problem here, so long as one is aware that
direct correspondences between the informational and molecular notions of the gene
are anything but necessary.

It should also be noted that, considering heritability relies on the statistical analysis
known as the analysis of variance (ANOVA), the notion of causality it rests upon refers
to populations rather than to the individuals forming populations (Northcott 2006,
2008). This means that if one were to obtain a heritability of 1, considering the above
assumptions are fulfilled, one could not interpret this value as meaning that genes,
and not the environment, cause a given individual to have a skin cancer susceptibility.
Rather, a correct interpretation would be that in a population, intervening on the
genotype of individuals will have an effect on the susceptibility of skin cancer of these
individuals, while changing the environment (UV) will not.'® I will come back to this
point in the next section when I discuss the two types of difference makers drawn
within the interventionist account.

As mentioned above, there are other senses and definitions of heritability (Jacquard
1983; Lynch and Walsh 1998; Falconer and Mackay 1996; Downes 2009; Tal 2009),
such as narrow-sense heritability, and the ways to estimate different heritabilities
also vary from one discipline to another (see Visscher et al. 2008). My analysis can
straightforwardly be extended to these other senses and estimates. For that reason, I
want to stress that I intend this analysis to serve any discipline using a concept of
heritability rather than solely behavioral genetics, a discipline in which some naive
causal interpretations of heritability have led to not only erroneous claims on human
differences, but also potentially harmful ones. This is the primary reason why the main
example I use throughout is not one stemming from behavioral genetics.

4 Range of causal influence and heritability

We saw in the previous section that, in simple additive cases, heritability can and
has been given a straightforward causal interpretation. In this section, I make the link
between heritability and causation tighter by showing that the notion of range of causal
influence presented in Sect. 2 captures at least partly the intuition underlying the causal
interpretation of heritability. I start by presenting some similarities between range of
causal influence and heritability and then propose to formalize them. Important to my
discussion will be the distinction between actual and potential difference makers, after
Waters (2007).

18 See however Tal (2009), who provides a probabilistic individual interpretation from heritability measures
under some simple assumptions as well as a discussion of the tension between an absolute individual causal
interpretation of heritability and an interpretation contextualized within a population in which there is
variation.
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When discussing heritability and causation, it is commonplace to start with the
remark that all phenotypes are the result of a causal interaction between a genotype
and its environment and therefore that both genes and the environment are causes for a
phenotype. This view is known as the interactionist consensus (Oftedal 2005; Sesardic
2005, pp. 48-56; Sterelny and Griffiths 1999, pp. 97-100). Gene-environment inter-
action, in this sense, implies that the claim from scientists that differences in genes are
causally associated with differences in phenotypes is not equivalent to the claim that
the environment is not causally involved in the production of phenotypes. Similarly,
when the same scientists claim that differences in genes are not causally associated
with differences in the phenotypes, they do not mean that genes are not causally
involved in the production of the phenotype. This relates to the above point that the
notion of causation invoked with regards to heritability is one that refers to a population
rather than to a more intuitive notion of causation referring to the individuals forming
this population (Northcott 2006, 2008).19 Concretely thus, the claim that differences
in genes are (not) causally associated with differences in phenotypes should not be
understood as genes being necessary (unnecessary) for the production of a phenotype.
One can already notice some similarity between this understanding of causation and
the notion of cause used within the interventionist account. Recall that from the inter-
ventionist minimal criterion for causation, the only requirement for C to be a cause of
O is that there exists an intervention changing the value of C that produces a change
in the value of O, not that an absence of C produces an absence of O, even though
in some particular situations the presence or absence of a cause will be the relevant
values.

With this distinction made, one will be tempted to make two claims about heritability
once interpreted causally. The first one is that if there is no genotypic variation in
a population, that is there is only one value for G, heritability is nil since V(G)
is, by definition, nil. This claim is correct. Without genotypic variation, genotypic
variance, which is a statistical descriptor of variation, will necessarily be nil and so
will heritability.

The second tempting claim to make is that if genotypic variation exists in the popu-
lation, it necessarily means that heritability is positive. This second claim is, however,
false: Genotypic variation is not necessarily associated with phenotypic variation. The
reason why this second claim is false can be illustrated with an example. Suppose a
population in which there is some genotypic variation, so that there are individuals
with different combinations of alleles, understood here as sequences of DNA with
specific nucleotidic combinations—see the above point about the different notions of
the gene and why this is only an idealization—and yet in which V (G) and conse-
quently heritability are both nil. This type of situation might look at first paradoxical.
But the paradox quickly dissolves if one remembers that genotypic and environmental
variance, in heritability studies, are defined in units of phenotypes, not in units of
genotypes and environment respectively. Recall that G and E are components of P
and therefore have the same unit as P. From this point, Lewontin (1974, pp. 402-403)

19 “The distinction between individual and population cause is a tricky one. I use it here in a very intuitive
way. For a deeper analysis, see Bourrat (2019)” Bourrat, Pierrick. ‘Evolution Is about Populations, but Its
Causes Are about Individuals’. Biological Theory, 12 October 2019. https://doi.org/10.1007/s13752-019-
00329-3
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concludes, when referring to V(G) and V (E), that “[w]e are not actually assessing
how much variation in environment or genotype exists, but only how much pertur-
bation of phenotype has been the outcome of average difference in environment [or
genotype]” (emphasis added). Put in interventionist terms, Lewontin’s remark implies
that the variances do not measure whether there is some variation on G or E, but
rather to what extent the intervening on G and E leads to change in P (the higher the
value, the higher the range of interventions and magnitude of effect). For instance, if an
intervention on genotype produces no change in phenotype, this will not be captured
by V(G).?°

This feature of the heritability statistics is strikingly similar to one feature of range
of causal influence. As shown by Pocheville et al. (2017), the range of causal influence
between two variables—which they refer to as ‘causal specificity—when measured as
mutual causal information, is insensitive to differences in the values of a causal variable
that do not lead to differences in the values of the effect variables. That is to say that C
in the diagram (a) of Fig. 3 has the same range of causal influence on O as C on O in
the diagram (b) of the same figure.?! In the same way as different genotypes associated
with the same phenotype have no impact on the value of heritability, different values of
C associated with the same values of O do not change the range of causal influence. As
I have argued elsewhere (see Bourrat 2019b), the difference between the diagrams of
Fig. 4 corresponds to a difference in one-to-one specificity, with the causal relationship
in diagram (b) being more one-to-one specific than the relationship in diagram (a).
This type of causal specificity is important in some contexts. Heritability measures,
like measures of range of causal influence, do not permit, however, to capture these
differences.

Before turning to another similarity between heritability and range of causal influ-
ence, a further distinction used in the interventionist literature must be made, namely
the distinction between potential and actual difference makers (Waters 2007). I will
come back to this distinction when I discuss the problem of locality in the next sec-
tion. A potential difference maker with respect to O is a variable C on which at least
one possible intervention from one value to another of C would produce a change in
the probability distribution of O. An actual difference maker with respect to O is a
variable C in a given population®? which is a difference maker on which at least one
intervention from one value to another of C produces a change in the value of O which
is actually observed in the population.

An actual difference maker in one population might not be one in another popu-
lation (or it might be to a greater or lesser extent). This is for two types of reasons.
First, the background in one population might be different from the background of
another population and the respective backgrounds might interact differently with the
relationship C — O in each population. In some extreme cases this difference might
lead to changes in O in one population and no changes in the other. In this set of cases,

20 Note that in cases where variables are nominal, for which information theory is best suited, the units of
phenotype would be in bits. By definition, nominal variables have no metrics.

21 It is from this point that Pocheville et al. (2017) devise their ‘proportionality constraint’ for choosing
the right grain of description for a causal relationship (see foonote 11).

22 The notion of population corresponds here to a population of events, not necessarily a population of
individuals, although in the case of heritability it will be a population of individuals.
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Cause Effect Cause Effect
(a) Causal diagram of the relation- (b) Causal diagram of the relation-
ship C' — O with four C' values and ship C' — O with two C values and
two O values. Range of causal influ- two O values. Range of causal in-
ence is 1 bit. fluence is 1 bit.

Fig.3 Causal diagrams presenting two causal relationships with the same range of causal influence in spite
of a different number of values for C

C will be an actual difference maker in the former population, but not in the latter.
Second, assuming a constant background, some values of C that are causally associ-
ated with some discriminate values of O might be more or less frequent in different
populations. In some other extreme cases the frequency of values of C associated with
discriminate values of O might be 0 in one population and > 0 in another. In this set
of cases, C will not be an actual difference maker in the former population, but will
be one in the latter population.

Interpreting the lessons from the interactionist consensus using the actual/potential
difference maker distinction is quite straightforward. Indeed, since an intervention on
G or E could potentially be the value ‘absent,” both of which would produce a value
of ‘no phenotype’ for P, both G and E are potential difference makers. Heritability
is always estimated within a population (whether it is an actual population or an
artificial one due to the experimental design) in which only subsets of the possible
values of G and E exist. Consequently, if heritability is interpreted causally as a
measure of the causal influence of the genotype on the phenotype in a population,
the right concept to use here is that of acrual, not potential difference maker. In
fact, because populations vary in genotypic composition and in the environment in
which they are found (more generally the background conditions), the relationships
between genotypes and phenotype and between the environment and the phenotype
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Genotype Cancer Genotype Cancer
(a) Causal diagram of the relationship (b) Causal diagram of the relationship
Genotype — Cancer in Popa. Range Genotype — Cancer in Popp. Range
of causal influence is 0 bit. of causal influence is 0.92 bits.

Fig. 4 Causal diagrams representing the causal relationships between Genotype and Cancer in two hypo-
thetical populations

might be different in different populations. This means, for instance, that intervening
on G might make no difference to P in a given population, in which case we would
conclude that V (G) = 0 (and consequently H? = 0) in this population. Yet, the same
intervention might make a difference to P in a different population, in which case we
would conclude that V(G) > 0 (and consequently H 2 > 0) in this other population.
The same reasoning applies for V(E).

To see how this remark translates concretely into heritability studies, take again the
example of skin cancer, and let us make some further assumptions. Suppose now that
both having either of the three genotypes G 1, G, or G3 is causally independent from the
chance of developing a skin cancer, and having the genotype G4 causes, independently
from any other factors, skin cancer with some non-nil probability following the causal
diagram presented in the diagram (b) of Fig. 2. We might assume that G4 individuals
are carriers of a mutation on the gene CDKN2A or the gene CDK4, which I mentioned
earlier (see Footnote 5).

Suppose now that we want to know the heritability of skin cancer and that we
launch a study in a population Pop,4 in which only the genotypes G1, G2 and G3
are present, each with the same frequency (%). In this population, some individuals
with either of the three genotypes will develop a skin cancer, for instance because
these individuals expose their skin to the sun more than others. Assume, however,
no systematic differences in sunbathing habits between the three genotypes. Because
there are no individuals with G4, the relationship between Genotype and Cancer is
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represented in the diagram (a) of Fig. 4. This diagram is a subset of the diagram (b) of
Fig. 2. In this example, because the variation in phenotype resulting from the variation
in the genotype is nil, a measure of heritability would consequently be nil.>3

We can now ask what would the measure of causal influence obtained from Eq. (H*
be within the interventionist account in such a case.> Since intervening on the geno-
type of individuals in Pop 4, with the actual frequencies of this population changing
from one value to another value (e.g., from G to G3), leads to no change in P, G is not
an actual difference maker in this population. A measure of mutual causal information
from Eq. (1) leads to the same conclusion since there are 0 bits of mutual causal
information from G to P, which means that G, in this population, carries no mutual
information about the probability of developing a skin cancer.”® Using this example,
we can thus see that a nil heritability corresponds to a case of nil actual range of causal
influence of G on P. What is true when considering this extremely simple example can
be generalized to any case in which intervening on the genotype, using the probability
distribution of the focal population, does not change the value of the phenotype.

Suppose now that we study the incidence of cancer in a second population (Popp).
In this population there are no individuals with genotype G but equal frequencies of
individuals with genotypes G», G3 and G4. Here again we assume no difference in
sunbathing habits between the three genotypes. In this population, individuals with
genotype G4 have a higher probability to develop a skin cancer due to the fact that
they are carriers of an allele that increases their susceptibility to skin cancer. The
relationship between Genotype and Cancer is represented in the diagram (b) of Fig. 4
which, in this case too, is merely a subset of the diagram (b) of Fig. 2.

In Popp contrary to Pop 4, because actual variation in phenotype resulting from a
variation in the genotype is positive, we have a positive heritability. Since intervening
on the genotype of individuals in Pop g, with the actual frequencies of this population,
leads to some change in Cancer, G is an actual different maker in this population. In
fact, computing the mutual causal information shows that there are about 0.92 bits of
information from Genotype to Cancer which means that Genotype, in this population,
and contrary to the case in Pop 4, causally influences the probability of getting a skin
cancer.”’ Using this example, we can thus conclude that a positive actual range of
influence of G on P would translate into a positive heritability. What is true with this
example can be generalized to any case in which intervening on the genotype, using
the probability distribution of the focal population, changes the value of the phenotype.

23 ‘We consider here that the variables Genotype, UV and Cancer correspond to the variables G, E and P,
respectively, in heritability studies. This would imply that a link between genotypic variation and phenotype
has been established as it is done in genome-wide association studies (see Visscher et al. 2008).

24 We cannot use Eq. (2) here because the variable Genotype is nominal, and as mentioned earlier, it
would not make sense in that context. Based on the assumptions of quantitative genetics (e.g.,following the
infinitesimal model, assuming that an infinity of genes, with each of them having an infinitely small effect
on phenotype) one can however interpret a set of nominal data as being continuous.

25 This measure corresponds to the SAD (for “specific actual difference”) of Griffiths et al. (2015).

26 Similarly, had Genotype, UV and Cancer been quantitative variables, then using the measure from Eq. (2)
would have led to the conclusion that G does not causally influence P.

27 Had G been a quantitative variable, using the measure from Eq. (2) would have led to the conclusion
that G causally influences P.
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We have established thus far, with the skin cancer example, first that a nil actual
causal influence of the genotype on the phenotype would correspond to a nil heri-
tability, when interpreted causally within the interventionist account of causation; and
second that some actual influence between a genotype and a phenotype would cor-
respond to a positive heritability. Let us now see what distinguishes cases in which
heritability is low, but not nil (0 < H 2 < 0.5) and cases in which it is high (> 0.5) in
terms of range of causal influence.

Let us start with a case of low but not nil heritability (0 < H? < 0.5). For heritability
to be low but not nil, following its definition given in Eq. (5), two conditions must be
satisfied: a) genotypic variation (measured in units of phenotype) must be positive,
so that genotypic variation results in a positive variation in P, but b) this variation is
lower than the variation in phenotype that results from environmental variation.

A possible situation satisfying these two conditions can be given using our example
of skin cancer. This situation implies that a change in probability to develop a skin
cancer (P) depends much less, in the population, on whether the individuals have
a given genotype than on the time they were exposed to the sun. Suppose a third
population Pop in which the four genotypes (G1, G2, G3 and G4) are represented
with the same frequency, that individuals have different sun exposure practices (but
no differences, on average, between the four genotypes) and that we know the dose
of UV received by each individual over a relevant period of time to predict the risk
of skin cancer. For simplicity I suppose that individuals can be separated into four
homogeneous groups for UV and that the relationship UV and Cancer is the same as
the one proposed in the diagram (a) of Fig. 2.

Once these assumptions are made, we have variation in phenotype attributable to
genotypic variation much smaller than variation in phenotype attributable to environ-
mental variation. Since all the values of the causal variables in Pop - have frequencies
which are the same as the probabilities of each value of the example presented in
Sect. 2, the computations we made about the example in that section will be the same
here. These led to a smaller range of causal influence for the variable Genotype than
for the variable UV, namely 0.81 bits and 1 bits respectively. From there it is tempting
to conclude that a small heritability is at least partly equivalent to the actual range of
causal influence of UV on Cancer being higher than that of Genotype. Thus, starting
from the information theoretic measure for range of causal influence of Eq. (1), a small
but non nil heritability might be regarded as corresponding to the mutual information
carried by UV on P, with the frequencies for each value of E observed in this popula-
tion being higher than the mutual information carried by Genotype on P.?® The only
difference between the diagrams of Fig. 2 and Pop is that Genotype and UV refer
to potential difference makers in the former case and actual difference makers in the
latter case.

28 Had the variables Genotype and UV and Cancer been quantitative variables, from the measure obtained
with Eq. (2), we would have seen that a small but non nil heritability of Cancer is equivalent to a situation
in which the amount of variance of P explained by carrying out an intervention on UV is higher than
when carrying out an intervention on Genotype. As seen above, it only corresponds partly to the ‘range of
influence’ notion of causal specificity. This is because with quantitative variables, the values of two variables
can be related in different ways—such as weakly or strongly—independently of range of influence. More
on this point below.
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If we now move to cases in which heritability is high (> 0.5), following a similar
reasoning as with cases of low heritability, such cases correspond to situations in which
phenotypic variation attributable to genotypic variation is superior to that attributable
to environmental variation. A modification of the skin cancer example could be devised
to show that a high heritability corresponds to a higher actual range of causal influence
of the genotype on the phenotype than that of the environment.

It should be noted at this point that the fact that heritability is a ratio means that it
cannot inform us about the absolute values of environmental and genotypic variance.
Thus, a high heritability does not imply that a high variance in phenotype is mostly
explained by a high variance in genotype. Rather it only implies that the variance in the
phenotype associated with the variance in the genotype is larger than that associated
with variance in the environment. This means that extreme cases in which there is no
environmental variance in the population and any level of genetic variance different
from O (even very small) will be cases in which heritability is 1. Thus, in terms of
range of causal influence, cases of maximal heritability only imply a nil actual range
of causal influence of the environment on the phenotype and a positive actual range
of causal influence of the genotype on the phenotype.

Taking into account all the points of convergence between heritability and range of
causal influence highlighted in this section, it is now time to attempt expressing the
former in terms of the latter. Heritability corresponds, at least partly, to a measure of
the actual range of causal influence of the genotype on the phenotype normalized by
the range of actual variation of the phenotype, the latter of which is measured by the
entropy of the phenotype. We thus have for nominal variables:

1(P; G)
P (6)
H(P)
where I (P; 6) is the actual mutual causal information from G to P, and H (P) is the
entropy of P.?° A similar definition for quantitative variables reads:

H? = V(P :G) )
V(P)

where V(P : 5) is the variance in P causally explained by G.*°

To take an example with Pop, a heritability measure using Eq. (6) for nominal
variables is % = 0.405 since I (Cancer; Gmpe) = 0.81bits and H(Cancer) =
2 bits, assuming G = Genotype. and P = Cancer.

Before going further, something should be said about the relationship between
Egs. (6) and (7). In fact, the measure proposed in Eq. (6), because it applies to nomi-
nal variables, or to quantitative variables when the quantitative information of different

29 Note that noise or error not attributable to the the variable G or the variable UV, assuming they are
independent variables, corresponds, in information theoretic terms, to H (P | G s E ), which measures the
remaining entropy after having learned the value of the genotype and the environment (as it is measured,
here by the variable UV), which is analogous to the sum of error terms in a regression model.

30 T thank Arnaud Pocheville for proposing this measure.
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values for a given variable are ignored, only captures one dimension of what a tra-
ditional measure of heritability or what Eq. (7) captures. In fact, if some particular
interventions on genotype produce large changes in phenotype when compared to
interventions of the same magnitude on the environment, or if one relationship is lin-
ear while the other is, say, quadratic, this will not be captured by the measure of Eq. (6).
To be clear, as mentioned in Sect. 2, the differences made in such cases correspond
to the dimension of causal strength which is not applicable to nominal variables since
these are variables for which no comparisons of values can be made other than saying
that these values are different.>! Causal strength is captured by Eq. (7), however it is
mixed with range of influence. These differences aside, both measures are similar, and
one can recover the measure obtained in Eq. (6) from Eq. (7) provided some assump-
tions about the distributions of the variables are made (Garner and McGill 1956, pp.
226-227). For any practical purpose, as argued by Garner and McGill (1956), it is bet-
ter, when dealing with quantitative variables, to use both the variance and information
theory framework and compute the two types of measures. I believe this conclusion
could be extended quite straightforwardly with regards to heritability.

With these relationships now established, I turn in the next section to the problem
of locality and a few other objections to interpreting heritability causally.

5 Causation, locality and heritability

One of the main problems with interpreting heritability causally is what has been called
the problem of locality (Lewontin 1974; Oftedal 2005; Taylor 2006, 2010; Sesardic
2005, p. 60): any measure of heritability obtained from one population cannot be
compared to the heritability measure for the same phenotype in another population.
In this section, I draw some links between the problem of locality and the concepts of
invariance and stability proposed in the interventionist literature (see Woodward 2000,
2003, 2010; Pocheville et al. 2017; Griffiths et al. 2015). The problem of locality has
been taken by some to be an important problem for interpreting heritability in causal
terms. I argue for a more nuanced position which recognizes the problem of locality
as an important one, but show that this problem concerns any causal relationship
established in the special sciences. Finally, I discuss and defuse a few other problems
that could arise from a causal interpretation of heritability.

We saw in the previous section, when presenting the potential/actual difference
makers distinction, that two sorts of reasons can explain why any given heritability
measure might be different in different populations, even if dealing with independent
variables E and G. In fact, the frequencies for G and/or E might be different in different
populations. I generalized this in terms of actual difference makers and argued that
any amount of actual causal influence of one variable C on another variable O in one
population might be different to the amount of actual causal influence of C on O in
another population (assuming a constant background).

31" As mentioned above, it does not make sense for the variable ‘color’, to ask whether the values ‘red’,
‘yellow’ and ‘green’ are superior or inferior to the value ‘blue’, if there is no way to reduce this variable to
another quantifiable variable (such as the amount of a pigment, for instance).
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Furthermore, besides what we considered so far as G and E, that is genotype and
UV respectively, other factors in the background, and thus not considered, might have
an effect on P (or on the relation between G and P or E and P). For instance, tak-
ing our cancer example, we could add in the background that the diet of individuals
is different in different populations. A diet poor in antioxidant would reduce toler-
ance to solar UV exposure and increase the risk of skin cancer, whereas a diet rich
in antioxidant would increase the tolerance. Given the difference in diet between dif-
ferent populations, it would be plausible to assume diet can have an influence on the
probability to develop a skin cancer. Another example would be the differential use
of sunscreen in different populations. These are cases of gene-environment statistical
interaction3? since background variables are variables in the environment. I will come
back to the problem of gene-environment interactions and how it might be measured
using information theory at the end of this section.

These two types of differences between populations embody (in part) the problem
of locality identified by Lewontin (1974).3% A consequence of locality is also that the
same estimate of heritability obtained in two different populations, or at two different
time points, might be the result of two very different underlying causal structures or
distributions over the cause variable.

The problem of locality is one important reason which led Lewontin (1974) to
conclude that heritability cannot generally be interpreted causally. Lewontin (1974),
and with him a large number of authors (for a review see Sesardic 2005, Chap. 2),
argues that an analysis of variance, upon which rest most heritability studies in humans,
is not equivalent, in general, to an analysis of cause unless all causal relata involved are
additive or nearly so. Others, while recognizing the problem of locality as important,
have been less reluctant to regard it as a fatal problem (see Sesardic 2005; Lynch and
Bourrat 2017).

As I show below, these two horns of the locality problem can be cashed out in
terms of another dimension of causal relationships within the interventionist account,
namely what has been called by Woodward (2003, Chap. 6) “invariance.” Following
Woodward, the invariance of causal relationship C — O is defined as the extent to
which this relationship “remains stable or unchanged as various other changes occur”
(2003, p. 239). Woodward (2003, 2010) distinguishes two kinds of invariance. The first
one concerns the extent to which one can change the value of C without changing the
causal relationship (or function) C — O. Suppose that we established that C causes
O and that the function mapping one value of C to one value of O is O = f(C), for

32 What appears as a statistical interaction, might causally be additive. We might consider a case in which
antioxidant and sun exposure act additively on the probability to develop a skin cancer. Yet, without con-
trolling for the background, this might appear as a statistical interaction.

33 Lewontin writes for instance “That is, the linear model [upon which rests ANOVA] is a local analysis.
It gives a result that depends upon the actual distribution of genotypes and environments in the particular
population sampled. Therefore, the result of the analysis has a historical (i.e., spatiotemporal) limitation
and is not in general a statement about functional relations. So, the genetic variance for a character in a
population may be very small because the functional relationship between gene action and the character is
weak for any conceivable genotype or it may be small simply because the population is homozygous for
those loci that are of strong functional significance for the trait” (1974, p. 403, my emphasis for “genotypes
and environments”).
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at least some intervention(s) on C.3* The more invariant the relationship, the larger
the number of interventions on C that will lead to changes of O that follow this
relationship, and the more explanatory this relationship should be considered to be. To
give an example, if developing a skin cancer as a result of solar UV exposure increases
following a given function over a large range of values so that this relationship is
considered highly invariant, then it seems reasonable to consider that the relationship
is more explanatory than if this relationship only holds under a smaller range of solar
UV exposures.

The second sort of invariance concerns the range of values that background variables
of the relationship can take without changing the value of O or the properties of
the relationship C — O. Causal stability, or more precisely the lack of stability
between G and P, corresponds to the notion of gene-environment interaction. The
more unstable the relationship the higher the gene-environment interaction. Suppose
that the function mapping one value of C to one value of O in a given background
(materialized by the variable B) is O = f(C), for at least some intervention(s) on
C .33 Under such conditions, the more stable this relationship, the larger the range of
interventions on B that will keep the relationship O = f(C), that is the mapping,
unchanged. Using our example, if developing a skin cancer as a result of sun exposure,
following a given pattern, is stable under a larger number of background conditions
(for instance different diets) than say as a result of having a particular genotype, it
seems reasonable to consider sun exposure as a more reliable cause of skin cancer
than having a particular genotype because UV — Cancer is a more stable relationship
than Genotype — Cancer.3® Pocheville et al. (2017), for clarification, call the first
notion “invariance” and the second notion “stability.” I follow suit.

In terms of range of causal influence, in cases where different causes (C and B) for
an outcome (O) are independent, invariance and stability thus amount to an invariance
in the range of causal influence across the possible range of values of a given C (which
correspond to either G or E in heritability, assuming G and E are independent) and
of B respectively. Pocheville et al. (2017) provide a suitable measure for stability, an
information theoretic measure of invariance has yet to be developed.

This means that in heritability studies, the problem of locality boils down to a
problem of low invariance and/or low stability for the relationships G — P and
E — P, since any change in one of these relationships will result in a change in the
heritability estimate.

As a side note, when C and B interact, another measure of stability corresponds to
the extent to which changing the causal range of influence between C and O depends on
the value of B, assuming here that the mapping between C and O remains unchanged
as B varies. Pocheville et al. (2017) provide a suitable measure based on another infor-

34 Talking about functions for nominal variables can be problematic since with such variables one cannot
map one number to another number. Instead of a mathematical function, think of a unified mechanism giving
rise to the effect when the effect is invariant, as opposed to a large number of contributing mechanisms,
when it has low invariance.

35 1 use the notion of function in a vernacular rather than mathematical sense here.

36 Note that the stability of a relationship here does not inform us of the magnitude of the cause on the
effect. Indeed, a causal relationship might be very stable, yet the magnitude of this relationship might also
be very weak.
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mation theoretic measure known as ‘interaction information’ different from the one
just discussed to measure this sort of stability. This measure, applied in the context of
heritability, can be interpreted as a measure of gene-environment interaction which—
for the purpose of this article—I have assumed is nil. However, provided that there are
well-known cases of gene-environment interaction in the literature (see Moffitt et al.
2005; Caspi et al. 2002), such a measure would be useful in this context. This example
shows that the information-theoretic implementation of the interventionist account to
investigate the links between causality and heritability is rich.

What should one conclude from having identified that the problem of locality for
heritability corresponds to well identified concepts in the philosophy of causation
literature? Woodward proposes that a low stability and/or a low invariance for a causal
relationship should not lead to the conclusion that such a relationship is not causal, but
there is a sense in which more invariant and more stable relationships have stronger
explanatory power. Invariant/stable relationships provide better causal explanations.
In fact, remember that relationships with low invariance and/or low stability all satisty
the minimal criterion of causation. They are thus all causal in this sense. I believe
that applying this reasoning to heritability studies is warranted. Heritability estimates,
even though they might vary between different studies are still indicators of a causal
relationship between G and P in a population, assuming they rely on solid experimental
data, or at least observational data with solid hypotheses enabling to derive a causal
model from them (such as the representativity of the sample population). Furthermore,
the extent to which the causal relationship between G and P is invariant/stable under
intervention is an empirical question that will depend on the phenotype studied.

Another important reason why I regard Lewontin’s conclusion, that most heritabil-
ity studies are hopeless at capturing causation, as being too extreme is that if it was
applied with parity to the relevant special sciences, that is sciences other than funda-
mental physics, one would have to conclude that many tests used in these disciplines
do not and cannot in principle capture causation. In fact, a version of the problem of
locality will be encountered for any system in which many variables (some of which
will not be controlled) are causally involved in producing an effect. For instance, a
recent study has shown that the replicability of experiments in psychological science
might be below 40%37, which led to what is known as a “replication crisis” (Open
Science Collaboration 2015). One putative important factor explaining this low rate,
among many other including methodological problems and publications bias, is a low
stability of the relationships studied. Although replication studies attempt to have the
same background variables when compared to an original study, there will inevitably
be differences in the backgrounds (due to differences in uncontrolled variables) that
might interact with the putative relationship being investigated. It is to be expected that
the less stable the relationship, the less replicable its results will be.3® This means that
the low replicability in psychological science and elsewhere might not solely be due
to the fact that a relationship investigated does not exist, but also that it is highly sen-

37 Replicability means here that if a study had a statistically significant result, its replication also had a
statistically significant result.

38 Another independent problem is whether the experimental conditions, or the conditions under which
studies are conducted, represent natural conditions, which can also be cashed out in terms of differences in
backgrounds.
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sitive to the background in which it was originally established. Applying Lewontin’s
conclusion about heritability estimates to these studies would lead to the conclusion
that interpreting many results from psychological science causally is misguided.

I do not think that it is what one should conclude. Rather, a more reasonable
approach, in my view, is that any causal claim made from one single study involv-
ing a complex system should be taken with a grain of salt, and one should attempt
to find evidence that could corroborate or contradict this causal claim as well as the
stability of the relationship. This clearly is the main function of replication, which is
one important, yet often neglected, motor of scientific progress. Thus, facing a given
heritability estimate (whether it originates from observed or experimental data) one
ought to question the robustness of this finding in order to evaluate to what extent
both G — P and E — P vary for different values of G and E, different frequencies
for these values, and in different backgrounds, and to what extent the results obtained
can be extrapolated beyond the range of background conditions in which it has been
established. At the very least, any causal interpretation of heritability ought to be
contextualized by giving as much information as possible about the background (the
population) against which the causal claim is made. But heritability studies are by
no means the sole case in which such precautions should be taken. This is a general
methodological point that applies to all scientific disciplines. In short, the fault with
causal interpretations of heritability estimates lies mostly in what people have made of
them rather than in the estimates themselves. There is indeed evidence that considera-
tion of agency, moral responsibility, and the type of phenotype investigated, influence
reasoning about whether variation in this phenotype is the outcome of variation in the
environment or in the genes (see for instance Alicke 1992; Lynch 2017).

Before concluding, it should be noted that interpreting heritability in the way I did
here may also shed some light on a possible criticism that a causal interpretation of
heritability might encounter, which is in the context of behavioral genetics, namely
that because everything is heritable (Turkheimer’s 1998; 2000 first law of behavioral
genetics), interpreting heritability causally explains nothing. It is in fact true that most
traits, including traits such as religiosity, marital status, or political opinions, which
would typically be considered as pertaining to the cultural domain rather than the
biological one, are all heritable to some extent (Polderman et al. 2015). The worry
here is that, if any trait turns out to be heritable with approximately the same value,
then its discriminatory or explanatory power will be diminished, in the same way that
invoking God to explain any event happening in the life of someone is not explanatory.

One way to respond to this criticism is that my causal interpretation leads to the
view that heritability is a relative measure of genotypic causal influence on phenotype
in a particular context. That it stresses that the terms ‘relative’ and ‘particular con-
text” provide an antidote against naive causal interpretations. Yes, all these traits are
causally influenced by the genotype, but that does not permit to answer the following
questions: Is the relationship the same in all contexts? What if there is more variation
in the environment? Does an intervention in the environment or in the individuals of
a population influence the phenotypic outcome? In sum, a naive causal interpretation
of heritability cannot appreciate that, in spite of a high heritability, the background or
context (including the environment) can be a much more important source of variation
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(which furthermore might be hidden given a lack of actual variation) in phenotype than
is the genotype.

In many regards, my causal interpretation vindicates Lewontin’s recommendation
to switch from thinking about the relations between genotype, the environment and
phenotype in terms of heritability to thinking about these relations in terms of norms of
reaction. A positive heritability estimate (assuming confounds have been eliminated)
establishes that there is a causal link between genotype and phenotype, but it says
nothing about the magnitude of this link, nor whether it breaks down easily. It does
not follow however, that because heritability has some important limitations when
it comes to a causal interpretation, it is not a valid tool for causal interpretations,
especially when the limitations are made explicit and no genuine alternative exists.

6 Conclusion

In this paper I have shown that heritability, when interpreted causally within the inter-
ventionist account of causation, is partly commensurate with the notion of causal
specificity qua range of causal influence proposed by Woodward (2010).3° More
particularly, starting from the formalization in information-theoretic terms of this
dimension of causation proposed by Griffiths et al. (2015) and the notion of an actual
difference maker proposed by Waters (2007), I argued that heritability amounts, at
least partly, to an actual range of causal genotypic influence normalized against an
actual range of phenotypic variation within a population. I then showed that any inter-
pretation of a given heritability estimate is prone to a form of the problem of locality
identified by Lewontin (1974). I linked this problem to the notions of invariance and
stability encountered in the interventionist literature. I argued that the problem of
locality with heritability, insofar as it amounts to a low stability and/or low invariance
of the causal relationships between, on the one hand, genotype and phenotype, and
on the other hand, environment and phenotype, is only one exemplar of what can be
regarded as a ubiquitous problem in science. A natural next step in the overall project
of linking the interventionist account to heritability would be to provide an analysis
of different heritability estimates using the interventionist account to establish how
different types of estimates fare with respect to Woodward’s stability and invariance
and ultimately how causally explanatory they are.

In the context within which heritability estimates have been used to justify and
reify differences (such as differences in IQ) observed between groups of humans with
different ethnic backgrounds, I believe, following Lynch and Bourrat (2017), that a
precise characterization of the scope and limits of interpreting heritability causally
represents a way forward towards eliminating harmful political biases.
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Sydney for feedback on a previous version of the manuscript. I thank in particular Arnaud Pocheville
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3 1tis only partly commensurate, for reasons detailed at the end of Sect. 4 with respect to the fact that the
measure of range of causal influence, proposed by Griffiths et al, does not consider quantitative variables.
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