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Abstract
With a few exceptions, the literature on evolutionary transitions in individuality (ETIs) has mostly focused on the relation-
ships between lower-level (particle-level) and higher-level (collective-level) selection, leaving aside the question of the 
relationship between particle-level and collective-level inheritance. Yet, without an account of this relationship, our hope to 
fully understand the evolutionary mechanisms underlying ETIs is impeded. To that effect, I present a highly idealized model 
to study the relationship between particle-level and collective-level heritability both when a collective-level trait is a linear 
function and when it is a nonlinear function of a particle-level trait. I first show that when a collective trait is a linear function 
of a particle-level trait, collective-level heritability is a by-product of particle-level heritability. It is equal to particle-level 
heritability, whether the particles interact randomly or not to form collectives. Second, I show that one effect of population 
structure is the reduction in variance in offspring collective-level character for a given parental collective. I propose that this 
reduction in variance is one dimension of individuality. Third, I show that even in the simple case of a nonlinear collective-
level character, collective-level heritability is not only weak but also highly dependent on the frequency of the different 
types of particles in the global population. Finally, I show that population structure, because one of its effects is to reduce 
the variance in offspring collective-level character, allows not only for an increase in collective-level character but renders 
it less context dependent. This in turn permits a stable collective-level response to selection. The upshot is that population 
structure is a driver for ETIs. These results are particularly significant in that the relationship between population structure 
and collective-level heritability has, to my knowledge, not been previously explored in the context of ETIs.

Keywords Heritability · Individuality · Evolutionary transitions in individuality · Interaction · Population structure

Introduction

An evolutionary transition in individuality occurs when 
collective-level individuals emerge from the interactions of 
particle-level individuals during evolution. The topic of ETIs 
is intimately linked to one of the most important questions 
in evolutionary biology over the last 50 years, namely that 
of levels of selection (Williams 1966; Sober and Wilson 
1998; Okasha 2006; Godfrey-Smith 2009; Wade 2016). This 
link started to be particularly clear from the mid-1990s fol-
lowing the publication of Maynard-Smith and Szathmáry’s 
The Major Transitions in Evolution (Maynard Smith and 

Szathmary 1995) and the growing interest in ETIs (see 
Michod 1999; Buss 1983, 1987; Godfrey-Smith 2009; 
Clarke 2016a; Bouchard and Huneman 2013; Calcott and 
Sterelny 2011).1 For an ETI to occur, particle-level selec-
tion must in some sense shift to the collective level. Yet, 
the notion of shift in selection is quite vague, and there is 
thus far no fully satisfactory explanation for them. Yet, with-
out a deep understanding of the nature of those ‘shifts’ in 
selection regimes from one level to the other, our hope to 
understand ETIs will be impeded. At the heart of ETIs thus 
lies the question of the levels of selection. But within the 
levels of selection question, two problems are entangled. 
One concerns selection sensu stricto, that is considered 
independently from inheritance; the other concerns selec-
tion understood more broadly, that is including the questions 
relating to the response to selection and inheritance.
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To see these two problems, it is useful to start from 
Lewontin’s famous three conditions for evolution by natural 
selection (Lewontin 1970). Following Lewontin’s approach, 
an entity is a unit of selection, if it is part of a population 
that can evolve by natural selection (Godfrey-Smith 2009). 
More specifically, the conditions say that evolution by natu-
ral selection will occur in a population in which there is (1) 
phenotypic variation, (2) this variation leads to differences 
in fitness, and (3) that this variation is heritable. As stressed 
by Lewontin, these three conditions can be satisfied at any 
level of organization, so that entities at different levels of 
organization can be ‘units of selection.’ A natural move from 
there is to consider that to be a unit of selection is a neces-
sary (but perhaps not sufficient) condition for Darwinian 
individuality2 so that the question of ETIs can be at least 
partly reduced to that of units of selection.3

We can see from Lewontin’s conditions that if selec-
tion stricto sensu—which can be defined as difference in 
fitness due to difference in phenotype—is important, so 
are inheritance and heritability—a population-level meas-
ure of inheritance. In fact, if the entities of a population 
exhibit differences in fitness without heritability, evolution 
might ensue, but natural selection will not be one of the 
evolutionary processes responsible for it. From this simple 
observation, it is thus important to understand that the ques-
tions of how and in what sense both selection stricto sensu 
and heritability can shift from one level of organization to 
the other are equally important to solve the puzzle of the 
emergence of individuality in evolution. Yet, although the 
importance of the two questions has been expressed by sev-
eral authors (e.g., Michod 1999; Okasha 2006; Herron et al. 
2018; Griesemer 2000), the question of the transitions in 
levels of selection has received much more attention than 
the question of the transitions in levels of heritability. For 
notable exceptions, see Okasha (2006) and Herron et al. 
(2018). The former question is undoubtedly an important 
one, and inasmuch as it still remains unresolved it deserves 
to be investigated. Yet, progress on the topic of ETIs will 

be impeded if no progress on transitions in levels of herit-
ability is made.

In this paper, I aim at filling this gap. I provide an analysis 
of the evolution of heritability at different levels of organiza-
tion in the context of ETIs. This analysis is different from 
both that of Okasha (2006) and Herron et al. (2018). The 
former analyzes heritability at different levels of organiza-
tion from the perspective of the Price equation (as well as 
regression models derived from it) (Price 1970, 1972) and 
uses Damuth and Heisler’s (1988) distinction between a 
conception of collective fitness, as the number of particle 
offspring produced, and a second conception of collective 
fitness as the number of offspring collectives produced. The 
former is often referred to as ‘multilevel selection 1’ and 
the latter as ‘multilevel selection 2.’ For reasons I cannot 
develop here, I believe the distinctions to be problematic 
in several respects (see Bourrat 2015c, 2016, 2015b). I will 
thus depart from Okasha’s analysis.

Herron et al. (2018) propose an analysis of heritability in 
the context of a type of ETIs in which collective offspring 
are genetic clones of a single parental collective and in 
which there is environmental variation. My model is differ-
ent from theirs because I assume that offspring collectives 
can have multiple parents and consequently are not necessar-
ily clones of their parent(s). Furthermore, although the effect 
of environmental variation is an important aspect of ETIs, 
I will not (or only briefly) consider it here. Rather my focus 
will be about the heritability of non-additive collective-level 
traits.

The results derived here apply to a maximally idealized 
system with the simplest and most mathematically tracta-
ble account of collective-level characters, and particle and 
collective generations. These results provide a baseline for 
a comparison. I will proceed in several steps. In ‘Collec-
tive heritability and additivity’ section, I present an addi-
tive model in which a collective character is the average 
character of its constituent particles, and in which offspring 
collectives have multiple parents. In this model collective-
level heritability is strictly equal to particle-level heritability, 
whether or not there is a positive assortment between the 
offspring particles produced by a collective (a form of popu-
lation structure). This leads me to consider, that in such a 
model, whether heritability is positive at the collective level 
is not, in and of itself, what permits to characterize the extent 
to which the collective level represents a ‘unit’ of evolution 
or a level of evolutionary individuality.

This leads me in ‘Collective-level heritability and col-
lective inheritance’ section to argue that a low variance 
in average offspring-collective character produced by a 
parental collective tracks, at least partly, intuitions about 
whether the collective level exhibits individuality and 
is a more adequate criterion than the existence of collec-
tive-level heritability. I then show that a low variance in 

2 Note that because I am interested in the evolutionary origins of 
individuality, by ‘individual’ I will mean throughout ‘evolutionary’ 
or ‘Darwinian individual.’ For other definitions of individuality and 
organismality, see Pepper and Herron (2008), Gilbert et  al. (2012), 
Lidgard and Nyhart (2017a), Godfrey-Smith (2013). Note also that 
there is some tension with the view that a unit of selection can be 
equated with Darwinian individuality. In fact, one might consider that 
individuality ‘emerges’ at one level when not one but a large num-
ber of traits at that level exhibit differences in fitness and heritability, 
while Lewontin’s conditions are trait specific. I will put these prob-
lems to the side here and consider the two as synonymous.
3 Note that the conditions require nevertheless to be slightly amended 
to fit the specificities of different levels of organization in the context 
of ETIs. For attempts to amend them, see for instance De Monte and 
Rainey (2014), Bourrat (2014), Bourrat (2015a), Griesemer (2000).
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offspring-collective character from a parental-collective 
character can be achieved when the population structure 
increases. In ‘Heritability of non-additive collective traits’ 
section, altering slightly the model presented in ‘Collective-
level heritability and additivity’ section, I show that in a case 
of a nonlinear collective trait, collective-level heritability is 
not only overall lower than particle-level heritability, but 
also highly context dependent when there is no population 
structure. Putting the different pieces together, I show in 
‘Increasing collective-level heritability from population 
structure’ section, that when population structure increases, 
collective-level heritability becomes less context dependent 
in the cases of nonlinear collective traits considered.4 The 
upshot is that population structure is an important factor 

to consider in the context of ETIs, which is discussed in 
‘Discussion’ section.

Collective‑level heritability and additivity

Suppose a population of infinite size N made of haploid par-
ticles divided into an infinite number NC of collectives, each 
of which is composed of n particles. The list of symbols used 
in the remainder of the article is reported in Table 1. I then 
assume that particles reproduce asexually, perfectly (more 
on this assumption in a moment) and simultaneously in dis-
crete generations, and that particle and collective generations 
overlap perfectly—that is, collectives cease to exist when 
particles cease to exist and are reformed simultaneously with 
the offspring particles being produced. Note that because I 
am not directly interested in the difference made by selection 
in this article, I consider that all particles produce the same 
number of offspring particles at each generation. In other 

Table 1  List of symbols Symbol Explanation

N Number of particles in the population
NC Number of collectives in the population
Nk′ Number of offspring collectives produced by collective k
n Number of particles in each collective
nk Number of particles coming from k in a given offspring collective of k
zi Character of particle i
zjk Character of particle j in collective k
zjkl Character of particle j of parental collective k sent to offspring collective l
z Average parental-particle character
z′ Average offspring-particle character

z
′

i
Average character of i’s offspring particles

Zk Character of collective k

Z
′

k
Average character of k’s offspring collectives

Z
0

Parental collective with phenotype Z = 0

Z
1

Parental collective with phenotype Z = 1

Z
′

0

Average collective offspring character of a collective with phenotype Z = 0

Z
′

1

Average collective offspring character of a collective with phenotype Z = 1

p Frequency of allele A in the population of particles
q Frequency of allele a in the population of particles
pk Frequency of allele A in collective k
qk Frequency of allele a in collective k
pjk Frequency of allele A in particle j of collective k
popt Frequency of allele A in a collective for the collective character to be 

Z = 1 , when Z is a nonlinear (piecewise-defined) function of z
h2
z

(Narrow-sense) heritability of particle character
h2
Z

(Narrow-sense) heritability of collective character
f Index of population structure
�op Regression coefficient of average offspring character on parental character

4 The notion of context dependence is notoriously ambiguous (God-
frey-Smith 1992; Lloyd 1988, p. 69; Sober and Wilson 1994, p. 539). 
By ‘context dependence’ in this article, I will mean ‘independent 
from the particle-type frequencies in the global population.’
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words, the particle character is neutral, so that each particle 
i has a character zi which is independent from its fitness.

Let us now assume that a given collective k has a char-
acter Zk which is equal to the mean particle character that 
composes it so that:

where zjk is the character of particle j in collective k. We 
also assume that the character of each particle is geneti-
cally determined by one single locus with two alleles A 
and a, which have the respective frequencies p and q (with 
p + q = 1 ) in the global population of particles and pk and qk 
in the collective k (with pk + qk = 1 ). Since we assume that 
particles reproduce with perfect fidelity, we have:

where pjk is the frequency of allele A at the single locus of 
particle j in collective k. If the allele is A, we have pjk = 1 . 
If the allele is a, we have pjk = 0 . This leads to:

This model is effectively similar to the classical trait-group 
model first proposed by Wilson (1975), but with no differ-
ence in fitness and no interaction between the particles.

In this model, we can ask what the relationship between 
particle-level heritability ( h2

z
 ) and collective-level heritabil-

ity ( h2
Z
 ) is. Before going further, I should make clear that 

I adopt a causal interpretation of heritability close to the 
one developed in Lynch and Bourrat (2017). Heritability 
represents, under my interpretation, the part of phenotypic 
variation that one can causally attribute to additive genetic 
variation—for that reason it refers to narrow-sense herit-
ability (Falconer and Mackay 1996). I consider that the rela-
tionship between two variables X and Y is causal if an ideal 
intervention on X, following Pearl (2009) and Woodward 
(2003) produces a difference in Y. In the case of heritability, 
if an intervention on the genetic composition of the popula-
tion at the parental generation produces a difference in the 
average offspring phenotype, then heritability is causal. Of 
course, many environmental variables are often correlated 
with the genetic composition of the population, the notion 
of ‘gene’ used when referring to heritability is not always 
the same in different context disciplines (e.g., molecular 
biology and evolutionary biology) (Lu and Bourrat 2018), 
and there exist different ways to estimate heritability (see 
Falconer and Mackay 1996, Chap. 10). All this means that 
heritability is fraught with a number of philosophical and 
theoretical problems, some of which have to do with the 
causal interpretation of heritability (see Godfrey-Smith 

(1)Zk =
1

n

n∑
j=1

k
zjk,

(2)zjk = pjk,

(3)Zk =
1

n

n∑
j=1

k
zjk = pk.

2007, 2009; Downes 2009; Bourrat 2015a; Bourrat and Lu 
2017; Bourrat et al. 2017; Jacquard 1983; Tal 2009, 2012; 
Sesardic 2005; Sarkar 1998). I will consider here the sim-
plest possible case in which there is no gene–environment 
correlation and interaction, so that the causal interpretation 
of heritability is unproblematic.

Narrow-sense heritability ( h2 ) is defined as the ratio 
of additive genetic variance on total phenotypic variance 
(which can have additive genetic, non-additive genetic and 
environmental components). Starting with h2

z
 , using the 

parent-offspring regression approach to heritability (see 
Falconer and Mackay 1996, Chap. 10), computing this her-
itability is quite straightforward. In the additive case, with 
asexual organisms, particle-level heritability is expressed as:

where z′
i
 is the value of the average offspring character of 

entity i, Cov( z�
i
, zi) is the covariance between the average 

offspring character and the parental character, and Var(zi) is 
the variance of the parental character.

Since in our model, particles reproduce with perfect fidel-
ity and there is no effect of the environment, we have:

Therefore, recognizing that the covariance of a variable with 
itself is the variance of this variable, particle-level heritabil-
ity can be rewritten as:

This result is not surprising: in the presence of variation in 
character, perfect inheritance of this character between par-
ent and offspring without variation in the environment (or 
noise) is expected to be associated with maximal heritability.

The assumption of perfect fidelity in the context of meas-
uring heritability might seem problematic to some. It would 
indeed be problematic if my aim was to characterize the 
effect of variation in the environment and noise at differ-
ent levels of organization. As mentioned earlier, it is not. 
My aim instead is to study the effect of nonlinear interac-
tions between particles on collective-level heritability, as 
will become clear in ‘Heritability of non-additive collective 
traits’ section.5 The environment and noise certainly have 
some important effects on heritability at different levels of 

(4)h2
z
=

Cov(z
�

i
, zi)

Var(zi)
,

(5)z
�

i
= zi.

(6)h2
z
=

Cov(zi, zi)

Var(zi)
=

Var(zi)

Var(zi)
= 1.

5 For a similar approach to mine, in which the authors analyze the 
heritability of ‘heterozygosity’ in the context of diploid sexual spe-
cies in which variation in the environment is not considered, see 
Nietlisbach et al. (2016).
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organization as shown by Herron et al. (2018), but adding 
these components of variance would greatly complexify the 
analysis provided here and would to some extent be orthogo-
nal to my argument.

Moving on to collective-trait heritability ( h2
Z
 ), to be 

able to compute it, we first need to express the relation-
ship between parental-collective character and average 
offspring-collective character in terms of particle distri-
butions within parental and offspring collectives. To do 
so, I introduce the index f, which is an analog to Wright’s 
F-statistics (Wright 1949; Weir and Cockerham 1984). f is 
a measure of population structure from the point of view 
of particles. Note that f measures population structure 
assuming the size of collectives is given. This remark is 
important since population structure and collective size 
can be linked to one another in the following way: In the 
absence of population structure a population is a single 
large collective made of all the particles of the popula-
tion since any particle has the same probability to interact 
with any other particle of the population. The existence 
of population structure makes the environment ‘viscous’ 
so that a given particle has a higher probability to interact 
with some particles than others, leading de facto to the 
formation of collectives or neighborhoods depending on 
the setting (Godfrey-Smith 2008).

In contrast, when there is no population structure under 
my sense, that is f = 0 , all particles form collectives (of 
a given fixed size) randomly. This means that an offspring 
particle of a parental collective has no more chance to 

form an offspring collective with another particle of the 
same collective than it has with any other offspring par-
ticle coming from other collectives. In a population of 
infinite size, f = 0 implies that one and only one parti-
cle coming from a given collective will be transmitted to 
a given offspring collective and consequently that each 
offspring collective has a number of parental collectives 
equal to its number of particles. If there is some population 
structure so that 0 < f < 1 , an offspring particle has more 
chances to form an offspring collective with a particle 
coming from the same parental collective than it has with 
a particle coming from other collectives from the paren-
tal generation. In other words, on average, more than one 
particle is transmitted from a parental collective to each 
of its offspring collectives so that a given offspring collec-
tive can have more than one collective parent, but a lower 
number than when f = 0 . Finally, when f = 1 , offspring 
collectives are composed solely of the particle offspring 
of one parental collective. An illustration of the effect of 
population structure, as I define it, on the composition of 
offspring collectives is given in Fig. 1.

From there, the value of average offspring-collective 
character from parental collective k can be calculated as the 
sum of two components modulated by the population struc-
ture f, namely one attributable to k in the absence of popula-
tion structure (a single particle is sent to each of n offspring 
collectives produced by k) and another attributable to k when 
f is maximal (all particles n produced by k are sent to a single 
offspring collective). We have:

Fig. 1  Illustration of the effect of f on the variance in offspring col-
lective composition for a given parental collective. In each case, the 
parental origin of particles is tracked by their shade. Particles with 
the same shade in the offspring population originate from the same 
parental collective. When there is no population structure ( f = 0 , 
left) offspring particles coming from one parental collective have the 
same probability to be found in any offspring collective. As a result 
the composition of each offspring collective is the same. When there 

is some population structure ( 0 < f < 1 , middle), offspring parti-
cles coming from one parental collective have more chances to be 
found in some offspring collectives rather than others. As a result, 
the composition of the four different collectives in the figure is dif-
ferent. When population structure is maximal ( f = 1 , right), offspring 
particles with the same parental collective have a probability of 1 to 
be found in the same offspring collective. Collectives reproduce per-
fectly
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where Nk′ is the number of offspring collectives produced by 
collective k, l is one offspring collective of collective k, z′

jkl
 

is the character of particle j’s offspring in collective k’s off-
spring l, and z′ is the average offspring-particle character in 
the whole population. The index f can be rewritten as 
follows:

where nk is the number of particles in offspring collective l 
coming from parental collective k. I will assume that paren-
tal collectives all contribute the same number of offspring 
particles to each of their offspring collectives so that we 
have:

From Eqs. (8) and (9), we can see that if only one particle 
offspring comes from a given parental collective in each 
offspring collective (which is what should be expected in 
a population of infinite size in which particles interact ran-
domly) f is zero since nk − 1 = 0 . When all particles in a 
given offspring collective come from one given parental col-
lective then nk = n , in which case f = 1.

Since for any particle i we have z�
i
= zi , and because there 

is no difference in fitness between the different types of par-
ticles we have z� = z , Eq. (7) can be rewritten as:

where zjkl is the character of the particle j of parental collec-
tive k sent to offspring collective l. Developing (10) leads to:

(7)

Z
�

k
=

1

Nk�

Nk��
l=1

�
(1 − f )

1

n

n�
j=1

⎛
⎜⎜⎝
z
�

jkl
+ (1 − n)z�

n

⎞
⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Value of an offspring-collective character

of k in the absence of population

structure (random assortment)

+ f
1

n

n�
j=1

(z
�

jkl
)

⏟⏞⏞⏟⏞⏞⏟

Value of an offspring

collective character

of k when population

structure is maximal

�
,

(8)f =
1

NC

NC∑
k=1

(
1

Nk�

Nk�∑
l=1

nk − 1

n − 1

)
,

(9)f =
nk − 1

n − 1
.

(10)

Z
�

k
=

1 − f

n

1

Nk�

Nk�∑
l=1

n∑
j=1

(
zjkl + (1 − n)z

n

)
+

f

n

1

Nk�

Nk�∑
l=1

n∑
j=1

l
(zjkl),

(11)

Z
�

k
=
1 − f

n

1

n

1

Nk�

Nk�∑
l=1

n∑
j=1

(
zjkl

)

+
(1 − f )(1 − n)

n

1

n

1

Nk�

Nk�∑
l=1

n∑
j=1

(
z
)
+ f

1

n

1

Nk�

Nk�∑
l=1

n∑
j=1

(
zjkl

)
.

Re c o g n i z i n g  t h a t  1

n

1

Nk�

∑Nk�

l=1

∑n

j=1

�
zjkl

�
= Zk  a n d 

1

N

1

Nk�

∑Nk�

l=1

∑N

j=1

�
z
�
= z , we can rearrange and simplify Eq. 

(11) into:

Since Zk = pk and z = p , we can rewrite Eq. (12) as:

The first term of the right-hand side of Eq. (13) ( ( 1−f
n

+ f )pk ) 
expresses the part of the collective character due to the struc-
ture of the population. The second term of the right-hand 
side ( (1−f )(1−n)

n
p ) expresses the part of the collective character 

due to the random assortment of offspring particles in the 
formation of offspring collectives.

Generalizing for our model, the regression approach to her-
itability between one parent and the average offspring charac-
ter in the case of sexual organisms (two parents) (Falconer and 
Mackay 1996, Chap. 10), we have:

where n
nk

 represents the number of parental collectives one 
given offspring collective has. When f = 0 , that is when 
there is no population structure so that a parental collective 
sends only one particle per offspring collective, we have 
nk = 1 ; when f = 1 , that is when all the offspring particles 
of a collective are sent to a single offspring collective, we 

have nk = n . Cov(Z
�

k
,Zk)

Var(Zk)
 represents the slope of the best fitting 

line �op when performing a one-parent-collective-average-
offspring-collective regression.

If we now replace Z′

k
 in Eq. (14) by its expression obtained 

in Eq. (13), we get:

Using the distributive properties of variance, we can rewrite 
this equation as:

(12)Z
�

k
=

(
1 − f

n
+ f

)
Zk +

(1 − f )(1 − n)

n
z.

(13)Z
�

k
=

(
1 − f

n
+ f

)
pk +

(1 − f )(1 − n)

n
p.

(14)h2
Z
=

n

nk

Cov(Z
�

k
, Zk)

Var(Zk)
=

n

nk
�op,

(15)h2
Z
=

n

nk

Cov
((

1−f

n
+ f

)
pk +

(1−f )(1−n)

n
p, pk

)

Var(pk)
.
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Since p is by assumption a constant and a covariance with 
a constant or between two constants is always nil, Eq. (16) 
simplifies into:

We can see that the second term of the right-hand side of Eq. 
(17), namely 

(
1−f

n
+f )Var(pk)

Var(pk)
 is simply 1−f

n
+ f  since Var(pk)

Var(pk)
= 1 . 

This leads to:

Recognizing that 1−f
n

+ f  is always equal to nk
n
 , we thus have 

h2
Z
= 1 for any structure in the population and with collec-

tives of any size.
The result obtained from Eq. (18) shows us that in the 

case of a collective–additive trait, one can immediately 
derive its heritability at the collective level from the herit-
ability of the particle trait from which it originates, whatever 
the population structure is, that is, however, the offspring 
particles of a parental collective are distributed in collective 
offspring. When the asexual particles reproduce perfectly, 
both h2

z
 and h2

Z
 are equal to one. Although I do not show it 

here, when there is a normally distributed environmental 
deviation (or noise) of particle character centered around 
0 that contributes additively to the collective character, the 
conclusion becomes that collective-level heritability is equal 
to particle-level heritability, even though it is inferior to one 
in both cases.

Collective‑level heritability and collective 
inheritance

In the previous section, I demonstrated that whatever level of 
assortment in the formation of offspring collectives between 
the offspring particles produced by a collective (measured by 
f), particle-level heritability and collective-level heritability 
of an additive–collective trait is always unity so long as the 
particles reproduce perfectly and there is no influence of the 
environment and no noise on the particle trait. Insomuch 
as collective-level heritability in one of the simplest possi-
ble models is derived directly from heritability at the lower 
level, surely the presence of collective-level heritability can-
not be the sole criterion to consider when it comes to evalu-
ate whether an entity is a unit of evolution or an individual 

(16)h2
Z
=

n

nk

(
1−f

n
+ f

)
Cov(pk, pk) +

(1−f )(1−n)

n
Cov(p, pk)

Var(pk)
.

(17)h2
Z
=

n

nk

(
1−f

n
+ f

)
Var(pk)

Var(pk)
.

(18)h2
Z
=

n

nk

(
1 − f

n
+ f

)
.

in its own right with respect to inheritance.6 In fact, using 
this criterion has no discriminatory power since it would 
answer that any collective with an additive–collective trait 
is a unit of evolution.

In this section, considering the limitations with collec-
tive-level heritability for characterizing a unit of evolution 
(or individuality), I put forward a different criterion with 
respect to inheritance for an entity to be a unit of evolu-
tion. I propose that the degree to which an entity is a unit 
of evolution is inversely proportional to the variance in off-
spring-collective-level characters it produces. In other words 
individuality, I suggest, amounts, at least partially, to the 
fidelity of character transmission from parental to offspring 
collective. Everything else being equal, a collective with 
a given collective-level character producing offspring with 
lower variance in collective-level character, scores higher 
on individuality than a collective producing offspring with 
a higher variance in collective-level character. One justifica-
tion for this criterion comes from Maynard Smith and Sza-
thmary (1995, p. 13) for whom an important feature of ETIs 
is the creation of new ways of transmitting information over 
time. Arguably, transmitting information can be regarded as 
equivalent to transmitting an entity’s character (at any level 
of organization) from one generation to the other with a high 
fidelity (which requires a low variance in offspring character, 
assuming the mean is close to that of the parental character).

As I show below, variation in the value of f can make 
important differences in the variance in offspring-collective 
character produced by a given collective. As such, if one 
accepts a low variance in offspring character produced by an 
entity as a criterion for individuality, increase in population 
structure represents an ‘engine’ for ETIs, as it permits to 
increase collective-level heritability for non-additive char-
acters. In ‘Discussion’ section, I will briefly mention what 
factors can contribute to increasing population structure dur-
ing ETIs.

Let us start from the model presented in the previous sec-
tion. Recall from Eq. (3) that, by assumption, the collective 
character is proportional to the number of particles with 
allele A in the collective. For a given parental collective the 
variance in its offspring-collective character can be concep-
tualized as the outcome of two variances: First, the variance 
originating from what this parental collective transmits to its 
offspring; second, the variance transmitted to the offspring 
from the rest of the particles produced by other parents. We 
assume here that the parental contributions to a given off-
spring collective are independent. If we start from a case 

6 Recall that I assume that all particles produce the same number of 
offspring at each generation in an infinitely large population, so that I 
keep both selection (i.e., difference in fitness associated with differ-
ences in phenotype) and drift out of the picture here.
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in which there is no population structure, a given parental 
collective transmits one and only one particle to each of its 
offspring collectives (recall that this is because the popula-
tion has an infinite size); n − 1 offspring particles of its off-
spring collectives come from other parental collectives. The 
allele of the transmitted particle depends on the composition 
of the parental collective. Its variance is that of a binomial 
law for a single trial and a probability pk of transmitting A 
( B ∼ (1, pk) ). This variance is equal to pkqk . It is maximal 
when pk is 1

2
 . The distribution of the n − 1 particles coming 

from other collectives at the parental generation follows a 
binomial law for n − 1 trials and a probability of transmitting 
A equal to p ( B ∼ (n − 1, p) ). The variance for this distribu-
tion is equal to (n − 1)pq.

Thus, when there is no population structure, under the 
assumptions made, we have a variance in offspring-collec-
tive character Z′

k
 for a given parental collective with char-

acter Zk equal to:

We can see two things from Eq. (19). First, the value of this 
variance depends on the value of pk and p. Second, unless 
pk and p are both very large or very small, when there is no 
structure in the population, variance in collective offspring 
character for a given parental collective will be high, and 
increases with n.

Suppose now that there is some structure in the popula-
tion so that collectives transmit more than one offspring par-
ticle to their offspring collective. In such a case, a collective 
parent transmits nk particles to its offspring and n − nk parti-
cles of each offspring collective come from other collectives 
at the parental generation. The variance in the focal parental 
collective contribution follows a hypergeometric distribution 
of nk draws in a collective of n particles with a number pk of 
allele A.7 This variance is equal to nkpkqk

n−nk

n−1
 . The variance 

in other parental collective contributions follows a binomial 
distribution of n − nk trials and a probability p to transmit 
the allele A at each trial. We thus have:

Assuming the extreme case where all the particles of a col-
lective come from a single parent, we have nk = n . Applying 
Eq. (20), we get Var(Z�

k
) = 0 . Note that when nk = 1 , Eq. (20) 

becomes Eq. (19).
We can now express Eq. (20) in terms of f. From Eq. (8) 

we can deduct that nk is equal to:

(19)Var(Z
�

k
) = pkqk + (n − 1)pq.

(20)Var(Z
�

k
) = nkpkqk

n − nk

n − 1
+ (n − nk)pq.

(21)nk = f (n − 1) + 1.

Replacing Eq. (21) in Eq. (20), we get:

Equation (22) shows that the variance in collective offspring 
character for a parental collective depends both on the popu-
lation structure (measured by f) and the size of collectives. 
The higher the collective size, the higher the variance in off-
spring-collective character, keeping f constant. The higher f, 
the lower the variance in offspring collective, keeping n con-
stant. Furthermore, as f increases, the less Var(Z�

k
) depends 

on the value of pk and p. Finally, everything else being equal, 
when pk < 0.5 , the lower the value of pk , the lower the vari-
ance in collective offspring trait, and when pk > 0.5 , the 
higher the value of pk , the lower the variance in collective 
offspring trait.

If one dimension of individuality is the ability for an 
entity to reliably transmit the value of its character without 
too much variation, as I have suggested it is, then following 
my model, ETIs must have required some or the combi-
nation of three things. Namely, they must have required a 
population structure favoring a low number of particles in 
a collective, a much stronger assortment between particles 
coming from a parental collective than from any other col-
lectives, and/or a low variance in parental collectives. These 
three factors—or a combination of them—will lead parental 
collectives to produce offspring collectives with the same 
character value as their parent.

It is interesting to note that in any real situation, eve-
rything else being equal, because the number of particles 
produced by a given collective is finite for a given parental 
collective, the higher the collective character variance in its 
offspring, the higher the number of offspring produced. This 
of course excludes cases in which the parental collective is 
genetically homogeneous and/or f = 1 . This also assumes 
that the number of offspring particles transmitted by a parent 
is kept fixed. This gives scope for a trade-off between size 
and number of offspring collectives (which is modulated by 
f) when the collective trait is not neutral. I do not explore 
the consequences of this here, but leave it for future work.8

(22)
Var(Z

�

k
) = ( f (n − 1) + 1)pkqk

n − ( f (n − 1) + 1)

n − 1

+ (n − ( f (n − 1) + 1))pq.

8 For a model based on the ‘wrinkly spreader’ strain of Pseudomonas 
fluorescens (see Rainey and Rainey 2003; Hammerschmidt et  al. 
2014), in which a fitness trade-off between collective viability and 
fecundity is considered, see Rainey and Kerr (2010). The sort of 
trade-off I have in mind here is slightly different as it concerns fidelity 
of transmission and fertility.

7 For the difference between the binomial and hypergeometric distri-
butions, see Wroughton and Cole (2013).
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Heritability of non‑additive collective traits

I showed in ‘Collective-level heritability and additivity’ 
section that when a collective trait is additive and particles 
reproduce perfectly, collective-level heritability is always 
equal to particle-level heritability ( h2

z
= h2

Z
= 1 ). Given this 

result, it implies that collective-level heritability cannot be 
used to decide whether a collective is a unit since collective-
level heritability is purely redundant with particle-level her-
itability. For that reason, I proposed instead in ‘Collective-
level heritability and collective inheritance’ section that a 
better criterion for measuring the extent to which an entity 
is a unit or an individual is the ability for this entity (here the 
collective) to produce offspring which do not vary too much 
from their parent character. I further established the relation-
ship between f and variance in collective offspring. Yet, so 
far I have only treated collective-level heritability for cases 
of additive collective-level character. I demonstrated that for 
such traits, f has no impact on collective-level heritability. 
In this and the next section, I extend my analysis for herit-
ability of nonlinear collective traits, that is collective-level 
traits that depend on the traits of the particles constituting a 
collective but that do not follow a linear function. I show that 
the conclusion reached in ‘Collective-level heritability and 
additivity’ section cannot be extended to nonlinear traits.

In this section, I demonstrate that collective-level her-
itability, at least for one sort of nonlinear traits, is lower 
and more context dependent than that of particle-level traits 
when offspring particles interact randomly to form offspring 
collectives. This result is significant insofar as it shows that 
heritability for nonlinear collective traits is not redundant 
with particle-level heritability. One might thus consider 
that collective-level heritability can serve as a criterion 
for demarcating a collective-level unit or individual in the 
context of nonlinear collective traits. A unit or individual 
following this criterion would be an entity that is part of 
a population in which there is a high level of collective-
level heritability. Yet, as I show, collective-level heritability 
for nonlinear collective traits is highly sensitive to allele 
frequencies. This means concretely that changing the allele 
frequencies in a population would force us to change on 
mind on the extent to which a collective is a individual. 
Rather, whether an entity is a individual, I claim, should be 
independent of the allele frequencies in the population. For 
that reason, the presence of collective-level heritability can-
not, in and of itself serve as a reliable criterion for defining 
a unit of evolution or an individual. However, as I will show 
in ‘Increasing collective-level heritability from population 
structure’ section, one way by which collective-level her-
itability can increase and be less context dependent is by 
increasing population structure ( f > 0 ), which I proposed 
in ‘Collective-level heritability and collective inheritance’ 

section can be seen as a better criterion for individuality than 
the presence of collective-level heritability.

Nonlinearity can be approached in different ways. A 
classical way is to consider that the character of a collec-
tive depends on a polynomial function of the characters of 
particles that compose the collective. Here I use a different 
notion, namely one in which the collective character is a 
piecewise-defined or hybrid function of particle character. 
With a piecewise-defined function, the function’s domain is 
separated into different intervals over which a different (sub)
function applies (Holtfrerich and Haughn 2006, chap. 1). 
To see what I mean by that, take again the model presented 
in ‘Collective-level heritability and additivity’ section. This 
time, suppose that the character Z of a collective depends 
nonlinearly on the proportion of particles with the allele A 
in the following way. We will assume here that Z is 1 when 
the proportion of particles with allele A within a collective 
has a certain frequency Popt , and 0 when this proportion is 
different from Popt . Z is thus defined as:

In biological terms, this type of interaction could easily 
occur in egalitarian ETIs, during which two or more part-
ners can now perform a function that none of them could 
perform independently (Queller 1997), such as, for instance 
the synthesis of a protein.

Collective-level heritability, in such cases, will depend on 
the different values of the parameters of the populations. To 
keep things simple, I present the cases in which collectives 
are made of two and four particles. I do not present the case 
for three-particle collectives because it is more complex than 
both the two- and four-particle cases. In fact, in the four-
particle case some values of f which I will use can lead an 
equal number of particles to be systematically transmitted 
from one collective parent to all of its offspring collectives. 
In the case of three-particle collectives this is not possi-
ble. For example, although f = 1

2
 for the three-particle case 

means that, on average, a parental collective transmits two 
particles to its offspring, this necessarily implies, under my 
assumptions, that the collective sends half of the time one 
particle and half of the time all three particles to a given 
offspring collective. When there is variation in the number 
of offspring collectives produced by a parental collective, 
estimating the collective-level heritability from regres-
sions becomes more complex. In the case of four-particle 

Z =

{
0, if pk ≠ popt
1, if pk = popt

.

Table 2  Genotype, phenotype 
and frequencies of two-particle 
collective genotypes at the 
Hardy–Weinberg equilibrium

Genotype AA Aa aa
Phenotype 0 1 0
Frequency p2 2pq q2
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collectives, when f = 1

3
 , which is the example I will use in 

the next section, under my assumptions, collectives always 
send two particles to their offspring, so that the variance in 
contribution to offspring collectives is nil. A collective is, 
in such cases, an equal parent to all of its offspring, which 
makes the estimation of collective-level heritability easier. 
I start with the case of two-particle collectives.

When collectives are made of two particles, there exist 
three possible types of collectives, of which the frequen-
cies follow the Hardy–Weinberg equilibrium (see Table 2) 
when the formation occurs from the random interaction of 
particles. Suppose now that only ‘heterozygote’ collectives 
(Aa) have a phenotype Z = 1 while the two ‘homozygote’ 
collectives have a phenotype Z = 0 (AA and aa). To calculate 
the heritability of the collective character, we first need to 
know the average offspring-collective character for the two 
possible parental collective phenotypes namely Z = 0 ( Z0 ) 
and Z = 1 ( Z1 ). This requires first computing the average 
offspring-collective phenotype of the three collective geno-
types AA, Aa, and aa. These are reported in Table 3.

We then need to calculate the weighted average offspring-
collective character of parental collectives with Z = 0 and 
Z = 1 , which I symbolize by Z′

0
 and Z′

1
 , respectively. The 

value of Z′

0
 depends on the parental genotype frequencies 

of collectives AA and aa. From Table 2 and Table 3, we can 

compute the average offspring-collective character for these 
genotypes. It is given by the following equation:

The value of Z′

1
 is found directly in Table 3 and is equal to:

With these two results, we can now plot the average off-
spring character on parental character and find the slope of 
the best fitting line using the standard least-square method. 
These are shown in Fig. 2 for three values of p, namely 0.25, 
0.5, and 0.9.

As can be seen in Fig. 2, when p =
1

2
 , we have Z�

=
1

2
 

for parental collectives with a collective character Z = 0 , 
and we also have Z�

=
1

2
 for parental collectives with a 

collective character Z = 1 . The slope of the regression line 
of average offspring character is thus 0 and consequently 
collective-level heritability, calculated from Eq. (14), is 
nil. Another observation is that the more distant p is from 
1

2
 , the larger collective-level heritability is. That said, it 

is always inferior to particle-level heritability ( h2
z
 ). This 

observation can easily be explained. In a population in 
which most collectives are AA, these collectives become 

(23)Z
�

0
=

p2q

p2 + q2
+

q2p

p2 + q2
=

pq

p2 + q2
.

(24)Z
�

1
=

1

2
.

Table 3  Frequencies of two-
particle average offspring-
collective phenotype for each 
parental-collective genotype 
at the Hardy–Weinberg 
equilibrium

Collective parental genotype

AA Aa aa

Off. genotype AA Aa AA Aa aa aA aa
Off. phenotype 0 1 0 1 0 1 0
Frequency p q 1

2
p

1

2
p +

1

2
q

1

2
q p q

Z′ q 1

2

p

Fig. 2  Linear regressions of 
average offspring-collective 
character on parental-collective 
character for the model of 
collectives with two particles 
producing a nonlinear trait in 
the absence of population struc-
ture ( f = 0 ). Collective-level 
heritability is highly variable 
depending on the frequency 
p of allele A. h2 = 0.4 when 
p = 0.25 , 0 when p = 0.5 , and 
0.78 when p = 0.9



315Theory in Biosciences (2019) 138:305–323 

1 3

parents mostly of AA collectives due to the lack of vari-
ation in the population ( q ≪ p ), while Aa collectives 
become parents of collectives that are half of the time 
identical to them and almost half of the time AA or aa 
( Z = 0 ). Finally, aa collectives, with the same phenotype 

as AA, produce almost systematically offspring that are dif-
ferent from them, that is Aa. That said, they are so rare that 
they almost do not count in the weighted average offspring 
character of collectives with phenotype Z = 1 . Thus, when 
p is very low or very high, the slope of the regression line 
tends toward 1

2
 . Since there are two collective parents per 

offspring collective, collective-level heritability (which is 
twice the slope of the regression line in this case) tends 
toward 1 but never reaches it.

Moving on to the four-particle setting, there are, in 
this case, five different possible collective genotypes with 
frequencies following the generalized Hardy–Weinberg 
equilibrium for two alleles. These are reported in Table 4. 

Table 4  Genotype, phenotype and frequencies of four-particle paren-
tal collective genotypes at the generalized Hardy–Weinberg equilib-
rium

Genotype AAAA AAAa AAaa Aaaa aaaa
Phenotype 0 0 1 0 0
Frequency p4 4p3q 6p2q2 4pq3 q4

Table 5  Frequencies of four-particle average offspring-collective phenotype for each parental-collective genotype with f = 0

Collective parental genotype

AAAA 

Off. genotype AAAA AAAa AAaa Aaaa
Off. phenotype 0 0 1 0
Frequency p3 3p2q 3pq2 q3

�′ 3pq2

Collective parental genotype

AAAa

Off. genotype AAAA AAAa AAaa Aaaa aaaa
Off. phenotype 0 0 1 0 0
Frequency 3p3

4

9p2q

4
+

p3

4

3pq(2q+1)

4

3q2

4

q3

4

Z′ 3pq(2q+1)

4

Collective parental genotype

AAaa

Off. genotype AAAA AAAa AAaa Aaaa aaaa
Off. phenotype 0 0 1 0 0
Frequency p3

2

p3

2
+

3p2q

2

3pq

2

q3

2
+

3pq2

2

q3

2

Z′ 3pq

2

Collective parental genotype

Aaaa

Off. genotype AAAA AAAa AAaa Aaaa aaaa
Off. phenotype 0 0 1 0 0
Frequency p3

4

3p2

4

3pq(2p+1)

4

9pq2

4
+

q3

4

3q3

4

Z′ 3pq(2p+1)

4

Collective parental genotype

aaaa

Off. genotype AAAa AAaa Aaaa aaaaa
Off. phenotype 0 1 0 0
Frequency p3 3p2q 3pq2 q3

Z′ 3p2q
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The average offspring-collective phenotype of the five pos-
sible collective genotypes AAAA , AAAa, AAaa, Aaaa, and 
aaaa is reported in Table 5. I suppose in this example that 
the genotype AAaa leads to the collective phenotype 1 
( popt =

1

2
 ) while all the other genotypes lead to the phe-

notype 0.
Using the same method as with the two-particle case pre-

sented earlier, we can calculate the weighted average offspring-
collective character of parental collectives Z0 . In this case it 
depends on parental genotype frequency of collectives AAAA , 
AAAa, AAaa and aaaa. The average offspring-collective char-
acter for these collectives can be calculated from Table 4 and 
Table 5. Z′

0
 is given by the following equation:

As with the two-particle-collective case presented earlier, Z′

1
 

is found directly in Table 5 and is equal to:

With these two equations, following the same method as 
previously, we can now plot the average offspring character 
on parental character and find the slope of the best fitting 
line �op using the least-square method. These are shown in 
Fig. 3 for four values of p: 0.25, 0.5, 0.9, and 0.99.

Following Eq. (14), collective-level heritability is com-
puted as four times the regression coefficient ( �op ) of aver-
age offspring-collective character on parental-collective 
character. The trend observed with the four-particle case is 
similar to that of the two-particle case. From Fig. 3 we can 
see that h2

Z
 varies widely depending on the frequencies of 

the two alleles. Collective-level heritability never reaches 
the same value as particle-trait heritability (which, under 
my assumptions is always 1). It is zero when p = 0.5 and it 
is high when p = 0.25 ( h2

Z
= 0.64 ) and tends toward 0 when 

(25)Z
�

0
=

3p2q2(p3 + p2(2q + 1) + q2(2p + 1) + q3)

1 − 6q2p2
.

(26)Z
�

1
=

3pq

2
.

p → 1 or p → 0 (not displayed in Fig. 3). These results can 
readily be explained if we consider first that when one of 
the two alleles is rare, it is very unlikely that exactly two 
alleles of the same type interact to form a new collective at 
the next generation. For that reason, most collectives have a 
phenotype equal to 0, whether the parental phenotype is 0 or 
1. Second when p =

1

2
 , parental collectives, whatever their 

phenotype, always produce, on average, offspring collectives 
which all have the same collective-level character. This leads 
to h2

Z
= 0 . Finally, for values of p superior or inferior to 0.5 

but not extremely superior or inferior (e.g., p = 0.25 and 
p = 0.9 ), collectives with Z = 1 tend to produce collectives 
which have a higher Z value on average than collectives with 
Z = 0 . This is because under random assortment, and with 
these frequencies of alleles, it is more probable that parental 
collectives AAaa produce an offspring collective with the 
genotype AAaa than it is for any other parental genotypes. 
This results in a high collective-level heritability.

Although I do not show it here, the two conclusions that, 
firstly, in the absence of population structure ( f = 0 ), col-
lective-level heritability is always lower for nonlinear traits 
that depend on the composition of collectives when com-
pared to linear traits in the absence of population structure 
and, secondly, that it can be highly context dependent (the 
more nonlinear, the more context dependent), can both be 
extended to larger collectives and different collective geno-
type-phenotype mappings.

Increasing collective‑level heritability 
from population structure

Let us sum up what has been achieved so far. In ‘Collective-
level heritability and additivity’ section, I showed that col-
lective-level heritability of a trait that depends linearly on the 
trait of its constituent particles (which reproduce asexually 
and perfectly) is always equal to the heritability of the parti-
cle trait in the population of particles (which is equal to one), 

Fig. 3  Linear regressions of 
average offspring-collective 
character on parental-collective 
character for the model of col-
lectives with four particles pro-
ducing a nonlinear trait in the 
absence of population structure 
( f = 0 ). Collective-level herit-
ability like with the two-particle 
model (Fig. 2) is highly variable 
depending on the frequency p 
of allele A. h2 = 0.356 when 
p = 0.25 , 0 when p = 0.5 , 0.363 
when p = 0.9 , and 0.057 when 
p = 0.99
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no matter what the population structure is. In ‘Collective-
level heritability and collective inheritance’ section, I argued 
that one important aspect of individuality is the ability for an 
individual to produce offspring that are on average not too 
dissimilar from itself ( Var(Zk�) → 0 ). I then showed that one 
way to reduce the variance in offspring-collective charac-
ter, given a parental-collective phenotype, is to increase the 
population structure ( f > 0 ), so that the offspring particles 
produced by a parental collective have more chances to form 
an offspring collective together than with particles produced 
by other parental collectives, and consequently more chances 
to resemble their parental collective(s). In ‘Heritability of 
non-additive collective traits’ section, I showed that when it 
comes to nonlinear traits, even in very simple structures of 
two or four particles, the conclusion reached in ‘Collective-
level heritability and additivity’ section, that collective-trait 
heritability is the same as particle-trait heritability, does not 
hold anymore. Collective-level heritability is always inferior 
to particle-level heritability and is highly context dependent, 
by which I mean that it varies widely with different frequen-
cies of alleles in the population.

In this section I show that the conclusion reached in ‘Col-
lective-level heritability and additivity’ section, namely that 
population structure does not affect collective-level herit-
ability is not valid when the collective trait is a nonlinear 
function of particle-level traits. I show that when traits are 
nonlinear, population structure has two effects on collec-
tive-level heritability. First, insofar as population structure 
permits collectives to produce offspring with a lower collec-
tive-trait variance, it increases the heritability of nonlinear 
collective traits. Second, it makes collective-level heritabil-
ity less dependent on the general-population frequencies of 
alleles. Effectively, population structure has the effect of 
‘linearizing’ nonlinear collective traits by making the inter-
action of particles produced by a given collective less con-
text dependent than when there is no population structure. In 
fact when f increases, because there is less shuffling between 
the particles produced by different collectives, the vari-
ability of the context of formation of offspring collectives 
decreases. This makes the particles of a collective effectively 
increasingly behaving as a single allele with a single effect.9

To see this, suppose we are dealing with our previous 
model in which a collective with four particles composed 
of two particles with allele A and two particles with allele a 
leads to a collective phenotype Z = 1 , while all other geno-
types lead to Z = 0 . I do not present the two-particle case, 
but the conclusion reached with the four-particle case can 
be extended to collectives of any size. Suppose now that we 

have a population structure resulting in f = 1

3
 . This means 

that offspring collectives have two parents, which both con-
tribute two particles to each of their collective offspring. In 
this situation, like with the case presented in the previous 
section, to calculate collective-level heritability of character 
Z, we need first to know the average offspring-collective 
character of a given parental collective genotype. The collec-
tive character value (Z) for each possible collective genotype 
is reported in Table 6.

To calculate the average offspring-collective values 
reported in Table 6, I have used the following procedure 
which is explained for the parental-collective genotype 
AAAa, but it applies for all five possible collective geno-
types. Collectives AAAa can transmit the combination of 
alleles AA in 50% of cases and the combination of alleles Aa 
in the other 50% . Since the alleles are at the (generalized) 
Hardy–Weinberg equilibrium, it is equivalent to choose the 
two other alleles for the collective at random. This means 
that the combination AA will form an AA-AA (AAAA ) col-
lective with probability p2 , an AA-Aa (AAAa) collective 
with probability 2pq, and an AA-aa (AAaa) collective with 
probability q2 . Similarly, the combination Aa will form 
a Aa-AA (AAAa) collective with probability p2 , a Aa-Aa 
(AAaa) collective with probability 2pq, and a Aa-aa (Aaaaa) 
collective with probability q2 . Note that in this model, if we 
assume that more than four offspring particles are transmit-
ted from a parental collective, we consider first that two two-
particle contributions are formed synchronically from the 
collective parental genotype and transmitted to an offspring 
collective. This operation is then repeated for the next four 
particles produced, and so forth. An alternative model would 
be that all offspring particles are produced at once, and then 
they interact randomly to form pairs and are transmitted to 
the offspring collectives. This latter model, which I do not 
explore here, produces different results from the one pre-
sented here.

To have a direct point of comparison with the four-parti-
cle case when f = 0 discussed in ‘Heritability of non-addi-
tive collective traits’ section, I assume that the four parental 
genotypes are at the generalized Hardy–Weinberg equilib-
rium, that is at the frequencies presented in Table 4. From 
Table 4 and Table 6, we can now calculate the weighted 
average offspring-collective character of parental collectives 
with Z = 0 . It is given by the following equation:

As with previous cases, Z′

1
 is found directly in Table 6 and 

is equal, in this particular case, to:

(27)Z
�

0
=

p4q2 + 4p3q(pq +
q2

2
) + 4pq3(pq +

p2

2
) + q4p2

1 − 6q2p2
.

(28)Z
�

1
=

p2

6
+

4pq

3
+

q2

6
.

9 The notion of allele used here is similar to the one presented in Lu 
and Bourrat (2018), that is following an evolutionary conception of 
the gene, not a molecular one.
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From there, like with the case where f = 0 , we can now 
compute the linear regression of average offspring charac-
ter on parental character, as shown in Fig. 4. If we com-
pare these results to the ones obtained in Fig. 3, we can 
note that collective-level heritability varies less as the fre-
quency p varies and is overall higher than when there is no 
population structure, even if for some particular values of p 
(e.g., p = 0.25 ) it is lower than when there is no population 
structure.

Let us now move on to the same four-particle case but 
with f = 1 , that is a case where offspring collectives have 
only one parental collective. In such a case, as stated in 
‘Collective-level heritability and collective inheritance’ sec-
tion, the variance in number of alleles transmitted from one 
parental collective to its offspring is nil whether the trait is 
linear or nonlinear. In any case, the parental and offspring-
collective characters are identical. The regression of aver-
age offspring character on parental-collective character is 
represented in Table 7.

In such a case, the frequency of parental collectives 
does not matter anymore to compute the parent-offspring 
regression. This is because the mean average offspring 
character is 0 for all collective genotypes with Z = 0 and 
1 for all collective genotypes with Z = 1 . This leads to 
the regressions of average offspring-collective character 

on parental-collective character shown in Fig. 5 for the 
four frequencies of p, namely 0.25, 0.5, 0.9, and 0.99. 
When f = 1 , collective-level heritability of a nonlinear 
collective trait is, following my assumptions, one, that is 
equal to particle-level heritability. I have shown this result 
here with a four-particle collective case, but this can be 
extended to populations of collectives of any size.

Discussion

With the different results derived in the previous sections 
in place, we can now ask their significance in the context of 
ETIs. I showed that when offspring particles interact ran-
domly to form offspring collectives, collective traits that 
depend in a nonlinear way on the proportion of particles 
within collectives can have a very small heritability for cer-
tain proportions of alleles in the general population. More 
importantly, variation in the frequency of alleles can change 
drastically the value of collective-level heritability. For 
instance, in the example with four-particle collectives, col-
lective-level heritability varied from 0 when the frequency 
of A is 0.5 in the population, to heritability of around 0.36 
when the frequency of p is 0.25 or 0.9, back to a very low 
frequency when the frequency of p is 0.99.

Table 6  Frequencies of four-
particle average offspring-
collective phenotype for each 
parental-collective genotype 
with f = 1

3

Collective parental genotype

AAAA AAAa

Off. geno-
type

AAAA AAAa AAaa AAAA AAAa AAaa Aaaa

Off. phe-
notype

0 0 1 0 0 1 0

Frequency p2 2pq q2 p2

2
pq +

p2

2
pq +

q2

2

q2

2

Z′ q2 pq +
q2

2

Collective parental genotype

AAaa

Off. genotype AAAA AAAa AAaa Aaaa aaaa
Off. phenotype 0 0 1 0 0
Frequency p2

6

pq

3
+

2p2

3

p2

6
+

4pq

3
+

q2

6

pq

3
+

2q2

3

q2

6

Z′ p2

6
+

4pq

3
+

q2

6

Collective parental genotype

Aaaa aaaa

Off. genotype AAAa AAaa Aaaa aaaa AAaa Aaaa aaaa
Off. pheno-

type
0 1 0 0 1 0 0

Frequency p2

2
pq +

p2

2
pq +

q2

2

q2

2

p2 2pq q2

Z′ pq +
p2

2

p2
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Such a huge variation in the value of collective-level her-
itability would make the long-term selection of a collective 
trait difficult. Imagine for instance a population of particles 
composed only of alleles A which interact randomly to form 
collectives. Suppose now that the new variant (a) emerges by 
mutation with a relatively low frequency. To take the four-
particle case as an example, even if one collective was to 
exhibit two alleles a by chance and exhibit a collective phe-
notype Z = 1 , that would confer a huge selective advantage, 

a low heritability at this frequency would mean that in spite 
of this huge advantage, its offspring collective would almost 
never tend to exhibit the same character.

What’s more, suppose now, for the sake of the argument, 
that a proportion high enough of allele a has arisen in the 
population, as a result of selection and/or drift, to a point 
where heritability is high (say p = 0.25 ). At that point, any 
change in the frequency of one of the two alleles, could 
easily lead to drastic change in heritability level. In a small 
population a change from p = 0.25 to p = 0.5 could read-
ily happen. It would result in a collective-level heritability 
moving from almost 0.36 to 0. Such a huge variation would 
be an important obstacle for collective-level adaptation. In 
sum, when there is no population structure, in my example, 
having an advantageous collective-level character leads to 
a very unstable response to selection, which is unfavorable 
for collective-level adaptation to emerge.

If we now examine the effects of population structure, 
we can see that one of them is to increase collective-level 
heritability whether the frequency of p is high or low. For 

Fig. 4  Linear regressions of 
average offspring-collective 
character on parental-collective 
character for the model of 
collectives with four particles 
producing a nonlinear trait with 
moderate population structure 
( f = 1

3
 ). Collective-level herit-

ability, in contrast to the cases 
in which there is no popula-
tion (Fig. 3) is less sensitive 
to the frequency p of allele A. 
h2 = 0.125 when p = 0.25 , 
0.133 when p = 0.5 , 0.195 
when p = 0.9 , and 0.314 when 
p = 0.99

Table 7  Frequencies of four-particle average offspring-collective phe-
notype for each parental-collective genotype with f = 1

Collective parental genotype

AAAA AAAa AAaa Aaaa aaaa

Off. genotype AAAA AAAa AAaa Aaaa aaaa
Off. phenotype 0 0 1 0 0
Frequency 1 1 1 1 1

Z′ 0 0 1 0 0

Fig. 5  Linear regressions of 
average offspring-collective 
character on parental-collective 
character for the model of 
collectives with four particles 
producing a nonlinear trait 
when population structure is 
maximal ( f = 1 ). With maximal 
population structure, collective-
level heritability is maximal 
( h2 = 1 ) and does not depend on 
the frequency p of allele A 



320 Theory in Biosciences (2019) 138:305–323

1 3

instance when p is 0.99, collective-level heritability moves 
from 0.06 when f = 0 to 0.314 when f = 1

3
 . Furthermore, 

collective-level heritability is never lower than 0.12 when 
it could reach 0 when there is no population structure. This 
implies that the collective-level response to selection, when 
there is some population structure, is overall higher and less 
context dependent than when f = 0 , that is whatever the fre-
quency of the particle types (besides 0) in the global popula-
tion is, there would always be some response to selection. 
From this, we can conclude that population structure acts 
as a buffer against variation in collective-level heritability. 
When f = 1 , which is an extreme case, we can see that there 
is no context dependence of collective-level heritability: The 
four particles are always transmitted together. The non linear 
trait has effectively been ‘linearized’ so that the four alleles 
of each collective behave effectively as a single one. Another 
way to make this point is to say that non-additive genetic 
components of variance are ‘converted’ into additive genetic 
variance as f increases. I take the notion of ‘conversion of 
non-additive genetic variance’ from Goodnight (1988) (see 
also Wade 2016, p. 12; Mackay 2014) who has explored this 
phenomenon in the context of epistasis in small populations. 
I have shown here its importance for ETIs. When population 
structure exists or starts to increase, some traits that could 
not be reliably transmitted from parents to offspring at the 
collective level, so that no response to selection can occur at 
that level, starts to be reliably transmitted, and thus permits 
a response to selection to occur.

Although selection is not the main focus of this paper, it 
seems probable that population structure is a prerequisite 
for what one might call (advantageous) evolutionary inno-
vations, that is phenotypes requiring the nonlinear interac-
tion between two or more particles for which there is no 
causal linear component of interaction, to be maintained 
over time. The collective nonlinear trait presented in this 
and the previous section satisfies this definition. Population 
structure can in principle arise from different causal pro-
cesses whether they are intrinsic or extrinsic to collectives. 
For instance, we could imagine two alleles at two different 
loci co-evolving, one conferring a direct evolutionary advan-
tage by allowing the expression of a particular collective, 
while the second trait permits the linearization of the trait 
at that level. Another scenario could involve the existence 
of a pleitropic effect. As with two alleles, the two effects 
would be the same, but in this case one and the same allele 
would be responsible for both effects at once. A real case 
satisfying the two alleles scenario might be the evolution of 
extracellular matrix from cell walls permitting cells which 
were originally separating after mitosis to remain attached 
to one another (probably due to some genetic mutations). 
Herron (2017, pp. 70–72) shows that different stages of cel-
lular attachments exist in the volvocine algae lineage, with 
species in which extracellular matrix exists having arguably 

higher degrees of individuality than species in which no 
extracellular matrix is found. Given a mechanism of control 
of the number of cells per collective, the production of an 
extracellular matrix, by preventing cells to separate from 
one another, permits the reliable transmission of nonlinear 
collective traits that would be impossible with freely moving 
cells. Finally, another causal origin could be ecology itself. 
In some suitable conditions, ecology could provide the tem-
plate for stable collective realized heritability of collective-
level traits to exist by preventing particles from different 
parents to interact, a hypothesis I explore elsewhere with 
collaborators (Black, Bourrat, Rainey, forthcoming).

The existence of population structure leading to a low 
variance in offspring character in the context of nonlinear 
trait as a criterion for individuality is a novel one in the 
literature on biological individuality. Over the years, many 
criteria have been proposed (for reviews, see Clarke 2010, 
2013; Lidgard and Nyhart 2017b; Pepper and Herron 2008). 
Godfrey-Smith (2009, Chap. 5) (see also Godfrey-Smith 
(2013)), for instance, argues like others before him (e.g., 
Dawkins 1982; Maynard Smith and Szathmary 1995; Hux-
ley 1912), that one criterion for individuality is the existence 
of a bottleneck between collective generations. As recog-
nized by Godfrey-Smith (2015) himself, the bottleneck cri-
terion can only account for fraternal ETIs, that is, in transi-
tions where the different partners forming collectives are 
closely related phylogenetically (Queller 1997). In the case 
of egalitarian transitions, that is, transitions in which the 
different partners or particles of a collective have different 
phylogenetic origins, extreme bottlenecks (one single cell) 
cannot be achieved because there is no possibility for one 
partner to ‘represent,’ that is to say reproduce on behalf of, 
the other(s). In contrast, for fraternal transitions reproduc-
ing on behalf of other partners this is readily achieved since 
all particles have the same genetic material. My criterion in 
terms of offspring variance and its evolution due to popula-
tion structure best applies to egalitarian transitions. It is thus 
an alternative to the bottleneck criterion (which applies best 
to fraternal transitions). This criterion could also be used, in 
complement to other criteria to adjudicate the debate over 
whether holobionts (a macrobe plus its symbionts) and other 
multispecies entities such as biofilms represent genuine 
biological individuals (see Ereshefsky and Pedroso 2013; 
Clarke 2016b; Bourrat and Griffiths 2018; Skillings 2016).

I briefly mentioned that one reason to use a criterion of 
individuality in terms of low variance in offspring character 
for a given parental entity was inspired by Maynard-Smith 
and Szathmáry’s proposal that ETIs are associated with 
new ways to transmit information. The rational underlying 
this criterion is further propelled by noticing that it is often 
claimed that individuals are entities with the ability of ‘like 
begetting like.’ Yet, The notion of ‘like begetting like’ can be 
ambiguous. In fact, a high heritability might involve entities 
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producing new entities that are very different from their par-
ent (assuming there is only one parent) but, on average the 
offspring character has exactly the same value as the parental 
one. In such a case heritability (in the absence of environ-
mental variation) would be unity. But the same expression 
might be understood in a different way, namely as the ability 
for a parent to produce reliably offspring that have a similar 
character value. In the former case, we would thus have a 
high heritability with an unreliable channel of transmission 
between parents and offspring, while in the latter case, not 
only would heritability be high but the channel of transmis-
sion would have a high fidelity. It is this second notion of 
‘like begetting like’ that my criterion captures.

It should be clear that I am not claiming that this is the 
sole criterion that counts for individuality, for, like with any 
other measure or criterion for individuality, it would lead 
us to consider that some entities, for which the individual-
ity status is regarded by many as equivalent, would score 
very differently. For instance, asexual entities, if the measure 
of variance in offspring character was taken to be the only 
important criterion, would score higher than sexual organ-
isms. I am only claiming that a low variance in offspring 
character produced by an entity is one indicator for indi-
viduality. For a discussion on the tension that exists in evolu-
tion between evolutionary factors that increase genetic het-
erogeneity and those that increase homogeneity, see Wright 
(1931, pp. 142–147).10 Another way to make the same point 
is that in a population exhibiting genotypic variance, high 
fidelity between parent and offspring necessarily implies 
high heritability, but the converse is not true. The differ-
ence between these two notions of inheritance has often been 
overlooked and, I believe, has been a source of confusion 
in the literature. For an example of the type of confusion 
I am talking about see the debate between Maynard Smith 
(1987a, b) and Sober (1987), in which they use notions of 
inheritance without being clear whether they refer to the first 
or second sense I have distinguished.

Conclusion

In this paper, I have clarified in what sense collective-level 
heritability plays an important role in the levels of selec-
tion debate, and more particularly for ETIs. The outcome of 
my analysis is that collective-level heritability of nonlinear 
traits can only be substantial and non-context dependent 
when there is a high level of population structure during 
the formation of collectives. The importance of nonlinear 
interactions has long been noted in the multilevel selection 
literature (for a review, see Wade 2016). At the same time, 
most multilevel selection analyses focus on linear collective 

traits (e.g., Okasha 2006). I have shown here that the impli-
cations of nonlinear interaction for multilevel inheritance are 
equally important. The time is ripe to move the literature on 
the emergence of individuality to nonlinear interactions. My 
model has remained highly idealized with several unrealistic 
assumptions such as an infinite population size and the same 
fitness for the two alleles. Given the difficulties to derive 
analytic results in the context of nonlinear systems, the next 
step in this project will be to build agent-based simulations 
and explore these two parameters jointly with the other 
parameters discussed in this article, as well as increase the 
number of loci and alleles responsible for the collective trait.
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