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Abstract
The interventionist account provides us with several notions permitting the qual-
ification of causal relationships. In recent years, there has been a push toward
formalizing these notions using information theory. In this paper, I discuss one of
them, namely causal specificity. The notion of causal specificity is ambiguous as
it can refer to at least two different concepts. After having presented these, I show
that current attempts to formalize causal specificity in information theoretic terms
have mostly focused on one of these two concepts. I then propose and apply a new
information-theoretic measure which captures the other concept.

Keywords Causation · Interventionist account · Causal specificity ·
Information theory

1 Introduction

Within the interventionist account, causation between two variables C and E is
characterized as follows:

Minimal criterion of causation: C is a cause of E, if there is at least one interven-
tion on C that changes the value of E in a set of background conditions Z.1

An intervention on a variable can be regarded as a particular kind of change which,
at a given point in time, produces nothing but a change in the value of that variable

1For a version of this criterion see Woodward (2013, Section 4). For a much more detailed version see
Woodward (2003a, p. 59).
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(Woodward 2003a, p. 14).2 The minimal criterion of causation tells us that if, fol-
lowing at least one intervention on C, some change is observed on the value of E

when compared to the value of E when no intervention on C is performed, then
C is a cause of E in Z. In the absence of a change in E, C is not a cause of
E in Z.

Although the minimal criterion of causation can help us to make a distinction
between causes and non-causes, it does not permit to make distinctions among causes
(Woodward 2010). Intuitively however, not all causes are equal. When providing a
causal explanation, some causes might be deemed more relevant, more insensitive
to changes, or as having other desirable properties. This is the problem of causal
selection (for more on this problem, especially in a biological context see Franklin-
Hall 2015). For instance suppose one lights a match. Most of us will have the intuition
that the action of striking the match is a more important cause for the match lighting
than the presence of oxygen in the surroundings of the match. Yet, intuitions alone
cannot serve as criteria for causal selection.

In order to move the causal-selection problem away from intuitions, a number
of properties of causal relationships have been proposed to supplement the minimal
criterion within the interventionist account.3 One of these properties, which will be
the focus of this paper, is causal ‘specificity’ (Weber 2006, in press; Griffiths et al.
2015; Pocheville et al. 2017; Waters 2007). Specificity is a notion that is both perva-
sive and ambiguous in biological sciences (Woodward 2010, 301). One area in which
the notion of causal specificity has been invoked is molecular biology. Within this
context, authors have attempted to assess the role played by DNA when compared
to other factors of the cell (causes) during transcription such as RNA polymerases.
Transcription is the process of synthesizing an RNA molecule from a DNA sequence.
Should one consider the sequence of DNA involved in the production of a messenger
RNA (mRNA) as a more important cause of the sequence of the mRNA produced,
than the polymerase involved in this process? One is tempted to respond in the affir-
mative because intuitively this sequence seems to have a higher specificity with
respect to the sequence of the mRNA produced during transcription. Yet, without a
precise measure of what is meant by ‘specificity’, this intuitive answer is insufficient
and might be misleading. This is the context in which Griffiths et al. (2015) provided
a measure of causal specificity. In this paper, building on previous philosophical
work on this topic (see Weber 2006, in press, Woodward 2010, Griffiths et al. 2015,
Pocheville et al. 2017), I extend this work and provide complementary measures of
causal specificity. Following previous work, my analysis will be limited to nominal
variables.

In Section 2, starting from the distinction made in Woodward (2010), I present in
more depth what one can mean by ‘causal specificity’ with the help of causal dia-
grams to which I will refer in later sections. In Section 3, I show that the measure
based on mutual information proposed by Korb et al. (2011), Griffiths et al. (2015),
and Pocheville et al. (2017) of causal specificity corresponds to the range of causal

2For a more precise characterization of the notion of intervention see Woodward (2003a, pp. 98–99).
3For a number of these see Woodward (2003a, 2010, Griffiths et al. (2015), Pocheville et al. (2017).
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influence notion of causal specificity,4 but not to one-to-one causal specificity. In
Section 4 I propose a principled method for choosing the grain of description of
causal relata. To measure one-to-one causal specificity, in Section 5, building on the
work of Griffiths et al. (2015), I propose a different information-theoretic measure
based on the notion of variation of information, which is a measure related to mutual
information. I then show that this second measure, in and of itself, does not per-
mit capturing the range of causal influence notion of causal specificity. Finally, in
Section 6, I revisit a version of the example proposed by Griffiths et al. (2015) on
transcription in light of my measure of causal specificity. I conclude by claiming
that a more complete formal characterization of causal specificity in the philosophy
of causation literature ought to take into account both the range of causal influence
and the one-to-one causal specificity of a relation and thus must use both mutual
information and variation of information to do so.

2 Dimensions of causal specificity

Woodward (2010) distinguishes two kinds of causal specificity, namely what I call the
‘range of causal influence’5 and what he calls the ‘one cause-one effect’ (p. 310) notion
of specificity (henceforth ‘one-to-one specificity’). The range of causal influence of
a variable C over another variable E concerns the number of interventions on C that
produce changes in the value of E and the extent to which these changes are different
from each other. The higher the number of interventions that produce changes in the
value of E that are different from other changes produced by different interventions,
the higher the range of causal influence. Woodward (2010) invokes this notion in the
context of molecular biology, following claims made by, among others, Davidson
(2001, pp. 1–2) and Waters (2007), that DNA is a more specific cause for the production
of mRNA than other causes because the DNA sequences control with some precision
the production (hence the specificity) of mRNA sequences, whereas the variation in
many other cellular resources would typically lead either to the production or absence
of production (hence the lack of specificity) of the same mRNA sequences.

One-to-one specificity captures the extent to which one cause is connected to a sin-
gle effect, and the extent to which one effect is connected to a single cause. The focus
of Woodward’s analysis with respect to one-to-one specificity is mostly the variable
level. By this, I mean that the one-to-one correspondence is between the variables C

and E. Yet, another possible focus of analysis, which will concern me here, is the
value of a variable level. By this, I mean that the one-to-one correspondence occurs,
not between the variables, but between values of the variable. Although these two
views on one-to-one specificity seem prima facie conceptually distinct, they are con-
nected. This is because two or more variables can be aggregated into a single one.
For instance, a number n of variables X1, X2, ..., Xn, assuming they are nominal and
independent, can be re-described as a single ‘aggregate’ variable W . Suppose that

4Causal specificity qua range of influence is called ‘causal power’ by Korb et al. (2011).
5This corresponds to Woodward’s ‘INF’ notion of specificity Woodward (2010, p. 305).
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each variable has v values with some given probability for each value. The number of
values of W will simply be nv .6 Although Woodward presents one-to-one specificity
from the variable perspective, he discusses in passing the possibility of “lumping” or
“splitting” a variable (Woodward 2010, p. 312), and applies the notion of one-to-one
specificity between states or values of variables rather than the variables themeselves
(Woodward 2010, p. 313). In the remainder of the article, I will frame my analysis
with respect to one-to-one specificity from the value perspective.

As shown by Woodward (2010, pp. 308–310), one-to-one specificity has been
invoked in many different scientific contexts, including epidemiology (Weiss 2002;
Hill 1965; Höfler 2005; Rothman and Greenland 2005), immunology (Langman
2000), the study of enzymes (Suzuki 2015), or behavioral genetics (Kendler 2005).
Other contexts, not mentioned by Woodward, include the evolution of mutualism
(e.g., fig/wasp coevolution, see Machado et al. 2005) and host/prey specificity for
biological control (Brodeur 2012). We will see in Section 6 how it is also relevant in
molecular biology.

Inspired by Woodward’s analysis, I propose that when one asks whether a rela-
tionship between two variables C and E which satisfies the minimal criterion of
causation, is causally specific, the question can take at least three meanings which
correspond to two concepts.

1. One-to-one Specificity

(a) Specificity of the cause for the effect (“specificity of the cause”, for short)
To what extent does a value of C cause values of E which are different
from values of E caused by other values of C? Or in other words, for each
value of E to what extent is this value determined by a single value of C?

(b) Specificity of the effect for the cause (“specificity of the effect”, for short)
To what extent is a value of E caused by values of C which are different
from the values of C which cause other values of E. Or in other words,
for each value of C to what extent does this value determine a single value
of E?

2. Range of causal influence What is the number of values of C that lead to dif-
ferent values of E, assuming that for each value of C there corresponds one and
exactly one value of E?

I regroup the ideas of specificity of the cause and of specificity of the effect under
the general notion ‘one-to-one causal specificity’ identified by Woodward (2010),
because they are the two complementary aspects of a bijective causal mapping.7

If the answer to question (1a) is that every value of E is caused by one and only
one value of C, as is illustrated in the diagrams (a), (c), and (f) of Fig. 1, then we have
a case of maximal specificity of the cause (see the caption of Fig. 1 to understand

6In cases where the assumption of independence is violated, the process of aggregation will involve a more
complex procedure.
7The adjective ‘bijective’ is another way to specify the mapping between two variables as being one-to-
one.
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Fig. 1 Causal diagrams representing different causal relationships between C and E. In all the diagrams
presented in this figure equiprobability for the values of C is supposed. Each arrow pointing from one
value of C represents the probability of this value causing the value of E it points to. If only one arrow
leaves a given value of C, the probability is 1 as in (c) and (f). If more than one arrow leaves a value of C,
as in (a), (d) and (e), then we suppose that each arrow has the same probability conditioning on C. E, in
such a case, is indeterministic because one value of C does not always cause one value of E

the diagrams). If the answer to this question is now that some or all values of E are
caused by more than one value of C, as is illustrated in (b), (d) and (e), then we have
a case in which the cause is to some extent non-specific to the effect. In other words,
some values of E are multiply realized. For instance, let us start from the example of
Griffiths et al. (2015, p. 539 ff.) and imagine that a sequence of DNA and an RNA
polymerase, symbolized by the variables DNA and POL respectively, produce an
mRNA symbolized by the variable RNA during the process of transcription. Suppose
a case in which four different sequences of DNA produce four different sequences
of mRNA, assuming the same polymerase is transcribing the DNA sequence. There
is in this case a high causal specificity of the cause (DNA) for the effect (RNA).
Suppose now that polymerases with different structures are nevertheless all able to



   11 Page 6 of 18 European Journal for Philosophy of Science            (2019) 9:11 

produce the same mRNA,8 assuming the same DNA sequence is used. In this case
we have a low one-to-one specificity of the cause (POL) for the effect (RNA), or at
least lower than that of DNA sequences for RNA.

Moving to question (1b) and applying the same reasoning, if the answer is that
every value of C causes one and only one value of E, as is illustrated in the diagrams
(b), (c), and (f) of Fig. 1, then we have a case of maximal specificity of the effect.
If now the answer to question (2) is that some or all values of C cause more than
one value of E, as is illustrated in the diagrams (a), (d) and (e), then we have a case
in which the effect is to some extent non-specific to the cause or indeterministic.9

Take again the example of the DNA sequences and the polymerase producing an
mRNA, but suppose now that alternative splicing occurs as proposed by Griffiths et
al. (2015, p. 543 ff.), so that a given sequence of DNA does not lead to the production
of a single mRNA sequence, but to a number of them. Alternative splicing, more
particularly cis-splicing, is the process by which portions of a gene called exons, are
stuck together with different combinations to produce different mRNA sequences,
which will later be translated into different amino acid sequences (Griffiths and Stotz
2013, pp. 54–56). Splicing decreases the causal specificity of the effect (RNA) for
the cause (DNA).

Moving to question (2), if we take once again the two diagrams (c) and (f) of
Fig. 1, which both have the same one-to-one specificity (bijection in each case),10 we
can nevertheless see that the range of values of C over which the mapping between C

and E is bijective is two in diagram (c) and four in diagram (f). A measure of causal
specificity understood as range of control or influence ought to account for this dif-
ference and give a higher range of causal influence for the relationship presented in
(f) than in (c). This is the notion of specificity which has been the target of Weber
(2006, in press), Waters (2007), Griffiths et al. (2015) within the context of compar-
ing the causal influence of DNA sequences with that of other cellular factors for the
production of mRNA sequences. To illustrate the range of influence notion of causal
specificity, take again the case of the DNA sequences and the polymerase produc-
ing an mRNA. Suppose again that there is some alternative splicing so that a single
type of DNA sequence can lead to the production of more than one type of mRNA
sequence. Suppose that there are only two possible types of DNA sequence, each of
which can lead to four mRNA sequences with equal probability via the effect of some
splicing mechanisms represented by the variable S. Suppose that there are four pos-
sible distinct splicing mechanisms. In this case, the range of influence of DNA on
RNA would be lower than that of S, since by intervening on DNA one could control

8This is a realistic scenario as RNA polymerases with different structures are found in different stocks of
a single strain of Escherichia coli (Jishage and Ishihama 1997).
9Whether the indeterminism is ontological or epistemic will depend on the nature of the case, such as
whether the relation between C depends on some quantum events or whether there is some unknown
variation in some of the background variables not cited in the diagram.
10I use here two bijective diagrams because it is the easiest way to illustrate the notion of range of
causal influence. That said, I could have used any other type of relationship such that when making
the comparison any amount of one-to-one unspecificity is discounted for assessing the range of causal
influence.
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only two sets of values of RNA (like a switch), while intervening on S would give
control of four sets of values of RNA.11

In the next section, I show that the measure of mutual causal information pro-
posed, among others, by Griffiths et al. (2015) permits accounting for the range of
causal influence notion of causal specificity but does not capture one-to-one causal
specificity. Griffiths et al. note the limits of mutual information considered as the sole
measure of specificity (Griffiths et al. 2015, pp. 537–538). Nonetheless, their exclu-
sive focus on this latter notion detracts from the completeness of their account. In
Section 5, I develop some of Griffiths et al.’s points by proposing a new information-
theoretic measure that provides a precise explication of the notion of one-to-one
specificity.

3 The limits of mutual causal information

The diagrams presented in Fig. 1 provide an intuition about the levels of one-to-
one causal specificity and the range of causal influence a given causal relationship
between two variables has. That said, they do not, on their own, provide a precise
measurement of these two quantities. For instance, looking solely at Fig. 1, it would
be hard to determine whether diagram (a) shows a different range of causal influence
and/or one-to-one specificity between C and E than diagrams (d) and (e).

Korb et al. (2011) and Griffiths et al. (2015) came independently to the same
measure of causal specificity between two variables, defined as the amount of mutual
information transferred from the causal variable to the effect variable. In this section
I show that the measure of causal specificity proposed by these authors corresponds
solely to the notion of range of causal influence and must be complemented by an
additional measure to account for one-to-one specificity.

I follow the treatment of Griffiths et al. (2015, p. 538) who define causal
specificity in information-theoretic terms as:

SPEC: the specificity of a causal variable is obtained by measuring how much
mutual information interventions on that causal variable carry about the effect
variable.

The mutual information between two variables corresponds to the the amount of
uncertainty lost on a variable given knowledge of the other, or again the amount of
redundant information between two variables. Mutual information is closely related
to the notion of Shannon entropy used in information theory (Shannon 1948). The
entropy of a variable corresponds to the amount of uncertainty about that variable.
Uncertainty is often measured in bits, but other units can be used. When measured in
bits, the entropy of a variable represents the expected minimal number of questions
with a yes/no answer one has to ask to know the value of the variable with certainty.
For instance, if the variable is ‘outcome of tossing a fair coin’, its entropy is 1 bit .

11The sets of values of RNA controlled by DNA have a cardinality of 4 while those of RNA have a
cardinality of 2.



   11 Page 8 of 18 European Journal for Philosophy of Science            (2019) 9:11 

To know for sure that the toss effectively resulted in ‘tails’ or ‘heads’, one just needs
to ask in expectation at least one question (such as ‘is it tails?’ or ‘is it heads?’). If
the variable is now the ‘outcome of tossing two fair coins successively’, the entropy
is two bits because the expected minimal number of yes/no questions that must be
asked is two, one for the first coin and another for the second coin (I assume here that
the tosses are independent).

Formally, the mutual information between the variable E and the variable C can
be calculated as

I (E; C) = H(E) − H(E|C) (1)
where I (E; C) is the mutual information between E and C, H(E) is the entropy of
E, and H(E|C) is the entropy of E conditional on C, that is once we know the value
of C.12 Following Griffiths et al. (2015), by using the do(.) operator (symbolized
with ‘̂’ in equations) proposed by Pearl (2009), which represents intervening on
a variable, one can provide a causal version of mutual information from ̂C to E

(I (E; ̂C)), as follows:
I (E; ̂C) = H(E) − H(E|̂C) (2)

Here, ̂C represents the variable C to which the value has been set by an intervention.
I will refer to this measure as ‘mutual causal information.’

The motivation underlying the use of the do(.) operator is that it permits to separate
cases in which any mutual information between E and C is the result of a third
(confounding) variable from cases in which the mutual information between the two
variables does not depend on the value of a third variable. That is, if the mutual
information between E and C is calculated when the values of C occur naturally, a
parent variable of both C and E might be the reason (at least partly) why the mutual
information between E and C is positive. By setting the values of C by interventions
with the do(.) operator, any putative causal arrow heading to C is broken, so that the
mutual information calculated is causal as opposed to statistical. Griffiths et al. (2015,
Appendix B) and Pearl et al. (2016, pp. 53–55) provide more detailed explanations
with examples for the motivation underlying the use of the do(.) operator.

The causal version of mutual information matches the range of causal influence
notion of causal specificity. This can easily be seen if one notices that the mutual
causal information from ̂C to E in diagram (c) of Fig. 1 is 1 bit against 2 bits

in diagram (f) of the same figure. This result is expected since the range of values
in the latter diagram, assuming equiprobability for the values of C, is twice that of
the former, and there is maximal one-to-one specificity (bijective mapping) in both
diagrams. Equiprobability for the values of C corresponds to a case of maximum
uncertainty about C, that is of maximum entropy. Interpreted causally, this implies
that no value of C is privileged to determine the possible range of influence of C on
E. As argued by Griffiths et al. (2015), this matches with Woodward’s analysis of
specificity qua range of influence. That said, they recognize that depending on the
context it might be more appropriate to use other distributions for C. In particular,
they discuss the propositions made in different biological contexts by Waters (2007),

12For a short formal introduction to the notion of entropy, conditional entropy and mutual information and
how to calculate them see Griffiths et al. (2015, Appendix). For a longer introduction see Stone (2015).
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who argues that the actual distribution for C is the relevant one in the context of
classical genetics, that of Weber (in press), who argues that one should use the “bio-
logically normal” distribution, and that of Griffiths and Stotz (2013, 198-199) who
argue that in some contexts, such as behavioral developmental or systems biology,
researchers are interested in potential causes, as opposed to actual ones, so that the
uniform distribution (equiprobable values) is the most relevant one. For my purpose,
I will restrict my analysis to the case of maximum entropy (equiprobable values)
since it is the one that matches the best with Woodward’s initial treatment of causal
specificity.

When the causal relationship is non-bijective, mutual causal information can be
seen as the range of values over which the minimal criterion of causation would have
been satisfied, had the mapping between ̂C and E with this mutual causal informa-
tion been bijective (Pocheville et al. 2017). This means that, considering a constant
number of possible values for C and E, interventions on C that do not make a dif-
ference to E (multiple realization of E) and interventions of the same class (that is
intervention changing the value of C from one value to the other) that lead to dif-
ferent possible values of E (indeterminism of E), will not contribute to reducing the
mutual causal information from ̂C to E when the same number of interventions are
possible with a bijective mapping. That is why if we now calculate the mutual causal
information from ̂C to E in the non-bijective diagrams (a), (b), (d) and (e) of Fig. 1,
in spite of the fact that some of the diagrams have a different number of values for ̂C

and/or E, we nonetheless find 1 bit in each case.
Thus, in spite of differences in causal structure and number of values for both ̂C

and E, a measure of mutual causal information, if interpreted as causal specificity
without clearly distinguishing range of influence from one-to-one specificity, tells us
that there is no difference in causal specificity between the bijective case of diagram
(c) and any of the other four non-bijective diagrams. Yet, considering the distinc-
tion made in Section 2 between range of causal influence and one-to-one specificity,
differences in one-to-one specificity between some of the diagrams in Fig. 1 with a
mutual causal information from ̂C to E of 1 bit are not captured by this measure.

These differences in one-to-one specificity are far from trivial. To see why, let us
take a slightly more concrete example. Suppose that we study two strains of bacteria
and that in one strain (S1), we identify two possible alleles (mutations) (m1 and m2)
on a gene that lead bacteria S1 to resist a given antibiotic (a) while two other alleles
on the same gene (m3 and m4) lead this bacteria not to resist this antibiotic (¬a). In
the second strain (S2), we suppose that the same gene (or more accurately, the homol-
ogous gene) can only exhibit two alleles, namely m∗

1 which provides a resistance to
the antibiotic (a), and m∗

2 which provides no resistance to the antibiotic (¬a). These
two cases have effectively and respectively the same structure as the diagrams pre-
sented in (b) and (c), replacing C by M and M∗ (for ‘mutation’), and E by A (for
‘antibiotic resistance’). Hence the mutual causal information in both cases, from ̂M

to A for S1 and ̂M∗ to A for S2, assuming equiprobability of the causal variables, is
1 bit .

Yet, at least in some biological contexts, one could not treat the relationship
M → A for S1 as having the same specificity as the relationship M∗ → A for S2.
A simple measure of the ratio of testing interventions on M , that is interventions that
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make a difference on the effect variable (using Woodward and Hitchcock’s 2003b
terminology), namely A in our example, shows this. This measure is 2

3 (two interven-
tions out of three for each value of C) in the case of S1, against 1 (one intervention
out of one for each value of M∗) in the case of S2. If one wanted to physically inter-
vene in the same way in the two systems in order to change the resistance of bacteria,
one would not have the same success rate in the two systems. The success rate would
be 66.67 % with S1 while it would be 100 % with S2.13 A measure of mutual causal
information between the causal relata does not permit capturing this difference in
one-to-one specificity. In Section 5, I provide an information-theoretic measure that
captures this difference. But before doing so I need to provide a principled reasoning
for deciding what the appropriate grain of description for the causal relata should be.

So far, I assumed that the way one describes the variables C and E is unproblem-
atic. Yet, without any principled reasoning, there exists an infinite number of ways
one can potentially describe them, depending on the fineness of the description. Fur-
thermore, in some cases, several values of C and/or E can be aggregated into one
single value without changing the range of influence of the causal relationship. The
case of the two strains of bacteria presented above is one of them. This fact seems to
imply that one-to-one specificity is, at least to some extent, an arbitrary distinction.
In the next section I show that there is a non-arbitrary way to ground the choice for a
grain of description.

4 Range of influence and grains of description

Pocheville et al. (2017) propose that the appropriate method to choose the grain of
description for a causal explanation is to aggregate the values of the causal relata
in a way that minimizes the entropy of C and E but maximizes the mutual causal
information from ̂C to E.14 Doing so, they claim, fixes objectively a ‘grain’ at which
to describe the causal relationship. This is equivalent to considering that the relevant
grain to describe a causal relationship is one that, for a given case, maximizes the ratio
of possible interventions that make a difference on the effect variable (i.e. maximizes
the ratio of testing interventions) on the total number of possible interventions.

Although following strictly this approach is on the right track, it must be developed
to take one crucial aspect of the scientific practice into account, namely that inter-
ventions on variables (by means of experimentations, for instance) are never made
in isolation from each other. Rather they are made within a paradigm that fixes the
type of intervention performed on biological or other systems and, at least in some
cases, with the aim to compare the effects of the same class of interventions being
performed on different but homologous systems. And indeed, Pocheville et al. (2017)

13The example of the two strains of bacteria only involves a difference in specificity of the cause. Other
examples involving differences in specificity of the effect or both differences in specificity of the cause
and of the effect could be constructed (see Section 6).
14Strictly speaking, Pocheville et al. only consider a case in which the entropy of ̂C can be reduced but do
not discuss cases in which the entropy of E can be reduced. I assume here that they would argue for the
same approach in such cases.
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are clearly aware of this when they write in passing, referring to a theoretical exam-
ple: “[w]hilst [our method] is the optimal way to discretise the variable[s ...] for this
single experiment [...], it is not optimal for a wider experimental program!”. I extend
here their reasoning.

To see why the method of maximizing mutual causal information while reducing
the entropy of causal relata is not optimal in a context wider than a single experiment
or case, let us take again our example with the two strains of bacteria and antibiotic
resistance. In this example, M in S1 and M∗ in S2 both have the same range of
influence, namely 1 bit . The entropy of the causal relata in S1 can be reduced without
changing the mutual causal information, by aggregating the two alleles leading to the
resistance to the antibiotic (m1 and m2) into one single value and aggregating the two
alleles leading to the non-resistance to the antibiotic (m3 and m4) into a second single
value. In doing so, the diagram (a) for S1 would effectively become like the diagram
(c) in Fig. 1.

Yet, contextualizing this case in a larger experimental program in which multiple
examples of antibiotic resistance in bacteria are considered, another conclusion about
which grain of description one ought to use to effectively compare the role of muta-
tions in bacterial resistance in different strains is reached. In fact, one challenge for
the strict ‘maximal mutual causal information for a minimal entropy’ method for this
case, is that an intervention in the case of S1 and of S2 does not represent the same
physical process: intervening on M in the case of S1 would involve changing inde-
terministically the DNA sequence from either of two values to either of two other
different values (each with a 0.5 probability). In contrast, intervening on M∗ in the
case of S2 would involve changing the DNA sequence deterministically from one
value to another one.15 The problem here is that to be able to compare explanations
belonging to the same class, one ought to perform the same class of interventions.
If this principle is not respected, the comparison of the effect of mutation on bac-
terial resistance will be made between different explananda and the ‘right’ grain of
description might end up being very different in very similar cases. Furthermore,
when scientists physically intervene on a class of biological systems using a particu-
lar technique, they fix the class of physical interventions performed and consequently
put some constraints on the type of questions, using this particular molecular tech-
nique, one can answer. A strict ‘maximal mutual causal information for a minimal
entropy’ approach does not permit taking these points into consideration.

These points acknowledged, choosing the right grain of description to be able to
compare explanations of the same class, corresponds to choosing the grain of inter-
ventions on C that maximizes the mutual causal information from ̂C and E while
minimizing the entropy on both C and E, and considering the class of phenomena
studied.16

15Recall that we assume that other physical values were impossible in the case of M∗.
16It should be noted that this approach is prey to a form of the reference class problem (see Hájek (2007) for
more on this problem), namely that there will be an infinite number of classes of phenomena a particular
case belongs to that might lead to contradicting views about the right grain of description to choose. I will
not attempt here to provide a solution to this problem which is a general one in many contexts.
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Take again our cases with the two strains of bacteria which will provide a case
in point. These two situations belong to a class of phenomena in which mutations
lead to change in the phenotype observed in this species. In such a class of phenom-
ena, considering a large number of strains, the class of interventions amounting to
one and only one physical mutation (for example a point mutation on a gene) carries
on average more mutual information on a phenotype than the class of interventions
consisting physically in two possible mutations, that is, an indeterministic interven-
tion leading to two indeterministic values of M . This is because in many cases of
this class of phenomena, indeterministic interventions consisting in two physically
possible mutations will lead to indeterministic outcomes on the effect variable that
would have carried more mutual causal information had the intervention been physi-
cally deterministic. This is true even though locally, that is for some particular cases
such as the case with S1, one type of intervention consisting physically in an inde-
terministic intervention will make no difference to the mutual causal information
between the causal relata, when compared to a deterministic intervention in a case
belonging to the same class. If this reasoning is correct, the grain of description for C

corresponding to one physical possible mutation (rather than two with equiprobabil-
ity) will be the correct one to use with both strains and more generally for this class
of phenomena. This will amount to considering four values for C with S1 and only
two with S2.

With a principled way to decide the level of one-to-one specificity for a given
causal explanation, I propose in the next section an information-theoretic measure of
this dimension of causal specificity.

5 Variation of information as ameasure of one-to-one causal
specificity

We saw in Section 3 that the notion of mutual causal information, if it permits
accounting for the range of causal influence notion of causal specificity, does not per-
mit distinguishing causal relationships with differences in one-to-one specificity. To
measure one-to-one specificity, using information theory, I propose to use a quantity
different from mutual information, called ‘variation of information.’17 Variation of
information between two variables E and C (V I (E; C)) is defined as the sum of two
conditional entropies, namely the conditional entropies of C knowing E (H(E|C))
and of C knowing E (H(C|E)), so that

V I (E; C) = H(E|C) + H(C|E) (3)

Variation of information is a measure related to mutual information in the following
way. We have

V I (E; C) = H(E, C) − I (E; C) = H(E) + H(C) − 2I (E; C) (4)

17For more on this concept see Meilă (2003).
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where H(E, C) is the joint entropy of E and C.18 Using the do(.) operator, like in the
case of mutual information, we can define a causal version of variation of information
as

V I (E; ̂C) = H(E|̂C) + H(̂C|E) (5)
When the variation of causal information from ̂C to E is zero, not only does this

imply that all the entropy present in C is transferred to E, but also that it does so
without any loss. In other words, it tells us that the mapping between C and E is
bijective, which means that to every one value of C there corresponds exactly one
value of E. When the variation of causal information is non-zero this implies either
that part of the entropy of C is not transferred to E which means that some values
of E are multiply realized and/or that the entropy of E is higher than the entropy of
C in which case the relationship C → E is to some extent indeterministic. These
two possibilities correspond well to the respective notions of the cause for the effect
being to some extent unspecific when H(̂C|E) > 0) and of the effect for the cause
being to some extent unspecific when H(E|̂C) > 0). We saw in Section 2 that these
concepts are the two complementary ones that permit assessing the extent to which a
relationship is one-to-one specific.

Thus, because of these different properties, variation of causal information is a
good candidate to measure one-to-one causal specificity. More precisely, since a case
of maximal one-to-one causal specificity from ̂C to E corresponds to a nil variation
of causal information, variation of causal information measures the one-to-one causal
unspecificity from ̂C to E. Taking our case with the two strains of bacteria presented
in the previous section, we find that the variation of causal information from ̂M to A

(S1) is positive (1 bit) while it is nil from ̂M∗ to A (S2). This implies a higher (and
maximal) one-to-one specificity for S2 when compared to S1. Note importantly that
the two measures obtained can be compared because one of them is 0 (maximally
one-to-one specific). More generally, when the measures to be compared are non-
nil, each variation of information measure must be normalized over the joint entropy
between the cause and the effect (see Section 6 for an example). This is because
variation of information is an absolute measure that does take into account the possi-
ble differences in entropy between the causal variables. Thus, everything else being
equal, a causal variable with a higher entropy will have a higher variation of informa-
tion with the effect variable, than a causal variable with a lower entropy. Normalizing
the variation of causal information over the joint entropy permits to overcome this
problem.

We now have at hand two different measures of causal specificity. One, namely
mutual causal information, captures the range of causal influence dimension of causal
specificity, but does not permit accounting for the one-to-one dimension of causal
specificity. The other, namely variation of causal information, captures the one-to-one
dimension of causal specificity. Whether variation of causal information also captures
the range of causal influence dimension of causal specificity is what I tackle next.

Like with mutual causal information not capturing one-to-one specificity, it is
quite straightforward to show that variation of causal information does not capture

18For more on the notion of joint entropy see Cover and Thomas (2006, Chap. 2).
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the range of causal influence of a causal relationship. To see this, suffice to take the
diagrams (c) and (f) of Fig. 1 and calculate the variation of information in each case.
Since the range of causal influence in diagram (f) is higher than that in diagram (c),
if the variation of causal information is different in each case, this will indicate that
this measure does not solely capture one-to-one specificity, but also potentially the
range of causal influence. Yet, the variation of causal information in both cases is nil,
which interpreted in one-to-one causal specificity terms implies that the relation is
bijective in both cases.

Range of causal influence and one-to-one specificity are nevertheless related in the
following way. Assuming a causal relationship with a constant joint entropy, which
could involve an equal number of equiprobable values for both ̂C and E (constant
H(̂C) and H(E)), but not necessarily, the further away the causal mapping between
C and E is from a bijective mapping with equiprobable values for C, both the lower
the mutual causal information and the higher the variation of causal information from
̂C to E will be. This can easily be verified with Eq. 4 and is illustrated with the graph-
ical representations in Fig. 2. These are representations of the relationships between
the different causal-information-theoretic measures discussed so far. We can see in
Fig. 2, that the relationships (b) and (d) have the same joint entropy (4 bits). In (b)
the mutual causal information is higher than in (d) (2 bits against 1 bit), which also
implies a lower variation of causal information (2 bits against 4 bits). That said,
knowing nothing about the mapping between ̂C and E and their respective entropies,
a given mutual causal information measure will tell us nothing about whether the
relationship is bijective, and a given variation of causal information measure can tell
us nothing about the range of causal influence of this relationship. Here again this
falls out of Eq. 4 and this can be illustrated with Fig. 2 in which we can see that in
spite of an equal mutual causal information (2 bits) from ̂C to E in (a), (b), and (c),
in each case the variation of information is different (0, 2 and 4 bits respectively).
Similarly, in spite of an equal variation of causal information (4 bits) in (c) and (d),
in both cases the mutual information is different (2 and 1 bits respectively).

Considering the two dimensions of causal specificity, each of which is captured by
a different causal information-theoretic measure, I propose that a high (low) causal
specificity of C on E amounts to both a low (high) variation of causal information
coupled with a high (low) mutual causal information from ̂C to E. On the one hand,
a low variation of causal information from ̂C to E implies that the mapping between
C and E is close to a bijective one (and bijective when the variation of information
is 0). However, it does not permit telling, in and of itself, whether the number of
values of C having an influence on the values of E is high. On the other hand, a high
mutual causal information from ̂C to E implies that a high number of values of C

have an influence on the values of E. However, it does not permit telling whether the
mapping between C and E is a bijective one.

6 Revisiting Griffith’s et al. example

In Section 2, I presented the example of a DNA sequence and an RNA polymerase
producing an mRNA, from Griffiths et al., which motivated the development of their
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Fig. 2 Illustrations of the relationship between causal joint entropy H(E, ̂C), entropy of the cause H(̂C),
entropy of the effect H(̂E), conditional entropies H(̂C|E) and H(E|̂C), mutual causal information
I (̂C;E) and variation of causal information V I (̂C;E)

measure of range of influence. In their most basic example, they suppose a case in
which the variable DNA has four possible values (dna1, dna2, dna3, dna4) with
probability 0.25 for each. Each one of the four values of DNA leads at the same time
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to a different value of RNA each resulting in the production of a different mRNA
with probability 0.125 (rna1 for dna1, rna2 for dna2, and so forth), and to the value
∅ with the same probability (see Fig. 3a). Second, they assume that the variable POL

has two values, one of which leads nondeterministically (with probability 0.125) to
the four different values of RNA producing an mRNA, while the second value leads
to the value ∅ with probability 0.5 (see Fig. 3b). With this scenario, they show that
the range of influence of ̂DNA on RNA on the one hand, and of ̂POL on RNA

on the other hand, is the same since both ̂DNA and ̂POL carry 1 bit of infor-
mation to RNA. They conclude that the two relationships “are (given our working
assumptions) equally causally specific”.

Yet, such is not the case if by ‘causally specific’ one refers to one-to-one
specificity. In fact, doing the calculations for both relationships one finds that
V I (̂DNA; RNA) = 2 bits, while V I ( ̂POL; RNA) = 1 bit . Because the relation-
ships DNA → RNA and POL → RNA have different joint entropies, the absolute
values cannot be directly compared. To be compared, each relationship must be nor-
malized over the joint entropy of the two variables involved in this relationship. Once
this is done, we obtain NV I (̂DNA; RNA) = 2

3 (NV I for ‘normalized variation

of information’), while NV I ( ̂POL; RNA) = 1
2 . This result indicates that ̂DNA

is less one-to-one specific than ̂POL. By increasing the number of possible DNA
sequences, the variation of information of ̂DNA becomes lower than that of ̂POL.
With eight equiprobable sequences of DNA, we get: NV I (̂DNA; RNA) = 0.625
and NV I ( ̂POL; RNA) = 0.6, which leads to the conclusion that ̂POL is slightly
more one-to-one specific than ̂DNA. With 16 equiprobable sequences of DNA, we
get: NV I (̂DNA; RNA) = 0.6 and NV I ( ̂POL; RNA) = 2

3 , which now leads to

Fig. 3 Causal diagram of the mapping between DNA and RNA (a), and between POL and RNA (b)
with probability distributions. Redrawn from Griffiths et al. (2015, p. 540)
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the conclusion that ̂POL is less causally specific than ̂DNA. It can be shown that
the one-to-one specificities of the two causal variables would be equal for a number
of values of DNA sequences of about 9.4. Above that number the higher the number
of equiprobable values of ̂DNA, the higher the difference in one-to-one specificity
between ̂POL and ̂DNA where ̂DNA is the most specific cause with the theoretical
limits bound for NV I (̂DNA; RNA) = 0.5 (maximally one-to-one specific under
the assumptions of equiprobability) and for NV I ( ̂POL; RNA) = 1 (maximally
one-to-one unspecific under the assumptions of equiprobability).

7 Conclusion

The aim of this paper was to provide a formal account of causal specificity that
builds on the work of previous accounts. I started by showing that two legitimate
meanings or dimensions of causal specificity exist. On the one hand, ‘causal speci-
ficity’ can mean ‘one-to-one causal specificity’ (which can itself be decomposed into
specificity of the cause and specificity of the effect). On the other hand, it can mean
‘range of causal influence.’ I showed that mutual causal information only accounts
for the range of causal influence dimension of causal specificity. From there, build-
ing on Griffiths et al. (2015)’s and Pocheville et al. (2017)’s work, I proposed a
method to choose the right grain of description for causal relata. I then presented a
causal measure of variation of information to account for the one-to-one dimension
of causal specificity. I showed that variation of causal information does not account
for the range of causal influence dimension of causal specificity. Finally, I showed
in what sense one-to-one specificity and range of causal influence are related. This
led me to the claim that causal specificity amounts to both mutual causal infor-
mation and variation of causal information. Elsewhere (Bourrat in press), I show
how variation of information can be used to give traction to the distinction between
instructive and permissive causes, a distinction used by developmental biologists
(see Woodward 2010, p. 317; Calcott 2017).
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