
Studies in History and Philosophy of Science 94 (2022) 87–98
Contents lists available at ScienceDirect

Studies in History and Philosophy of Science

journal homepage: www.elsevier.com/locate/shpsa
On the causal interpretation of heritability from a structural causal
modeling perspective

Qiaoying Lu a,b,*, Pierrick Bourrat c,d

a Institute of Foreign Philosophy, Peking University, PR China
b Department of Philosophy, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, PR China
c Department of Philosophy, Macquarie University, North Ryde, NSW, 2109, Australia
d Department of Philosophy and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
A R T I C L E I N F O

Keywords:
Heritability
Causal interpretation
Gene–environment interaction
Gene–environment covariation
Structural causal modeling
Interventionist account of causation
* Corresponding author: Department of Philosoph
E-mail addresses: qy.lu@pku.edu.cn (Q. Lu), p.b

https://doi.org/10.1016/j.shpsa.2022.05.005

0039-3681/© 2022 Elsevier Ltd. All rights reserved
A B S T R A C T

Heritability estimated using the analysis of variance (ANOVA) for ascribing causal responsibility to genes for a
phenotype has been criticized widely. First, there are problems associated with articulating the exact causal
meaning of heritability in the standard model. Second, in conditions of gene–environment interaction or
covariation that violate the assumptions made by the standard model, a causal interpretation of heritability is
thought to be unwarranted. This paper aims to rethink these ideas and associated disputes from a structural causal
modeling (SCM) perspective. Using SCM, we show that, in the standard model, heritability reflects the causal
effect of eliminating genotypic differences on the change of phenotypic variance of a population. In the presence
of interaction or covariation, heritability is estimated incorrectly using ANOVA. However, SCM can provide the
causal effect of genotypes on the phenotypic variance regarding particular interventions. We also show that SCM
can identify different types of causal effect and answer individual-level causal questions. We conclude that SCM
has the resources to provide a systematic causal interpretation that can supplement traditional heritability esti-
mates via ANOVA and offer a more substantial causal analysis of genetic causation.
1. Introduction

Heritability estimated using the analysis of variance (ANOVA) to
measure the causal contribution of genes to traits has been criticized
widely. The basic function of the method is to partition the phenotypic
variance of a population into two parts: one due to genotypic difference
and the other due to environmental difference. Heritability is defined as
the ratio of the genotypic component to the total variance. Classically, it
is interpreted as the “relative importance” of genotypic causes to the
phenotype of the population (Falconer & Mackay, 1996, pp. 122–123).
One famous criticism of heritability analysis was formulated by Richard
Lewontin in the 1970s. Following Arthur Jensen’s inference that from
high heritability estimates for IQ, one can assert that intellectual ability is
determined predominantly by genes (Jensen 1969, p. 7). Lewontin (2006
[1974]) highlighted three significant limitations of this method: namely,
the problems of interaction, locality, and tautology.

The current consensus among philosophers of biology is that herita-
bility analysis has minimal causal implications and is misleading when
used to provide causal explanations for individual development (Downes
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& Matthews, 2020). Nevertheless, several authors have defended the
method’s explanatory usefulness (Bourrat, 2021b; Oftedal, 2005; Pear-
son, 2007; Sesardic, 2005; Tal, 2009). Given the lengthy discussions on
the causal interpretation of heritability, it is prudent to examine the
concept in precise causal terms. For instance, Tal (2012, pp. 234–235)
discusses different causal consequences in the presence of gene-
–environment interaction and covariation in applying probability to
heritability analysis. Lynch and Bourrat (2017) investigate heritability
estimates in covariation cases by distinguishing causal origins. Bourrat
(2021b) interprets heritability in terms of James Woodward’s notion of
range of causal influence based on information theory. However, to date,
there has been no explicit discussion of heritability using systematic
formal tools to study causality.

In recent years, causal modeling has reshaped our understanding of
causality and the relationship between statistics and causation. Causal
models are mathematical objects representing causal relationships that
(1) facilitate causal discovery from statistical data, and (2) permit one to
infer specific causal claims based on those models. The concept originates
in the work of Sewall Wright (1921) and has been addressed by
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influential contemporary works such as Spirtes et al. (2000) and Pearl
(2009). The first thorough application of causal modeling in biology can
be found in Shipley (2000). Although developed independently with
different aims, the primary concepts of causal modeling have been
entangled with Woodward’s interventionist account of causation. Both
causal modeling and Woodward’s interventionist account share the basic
idea that causation should be defined in terms of intervention because we
acquire causal knowledge by actually or hypothetically intervening in the
world and then use this knowledge for manipulation and control (see,
e.g., Pearl, 2009, pp. 361–362; Woodward, 2003, Chapter 2.1).1 This
paper investigates the disputes surrounding ANOVA heritability esti-
mates using Pearl’s structural causal modeling (SCM). It is fair to note
that Woodward’s and Pearl's frameworks have influenced one another
(Pearl, 2003, 2009, p. 239; Woodward, 2003, pp. 38–39).

Crucially, we apply SCM to analyze the causal implications of heri-
tability instead of obtaining an estimation, which is typically the aim of
statistical approaches such as ANOVA or potential outcomes (see, e.g.,
Rubin, 2005). When facing a query about a certain type of causal effect,2

the answer provided by SCM is essentially indirect: “if you tell me how
the world works (by giving me the full causal graph), I can tell you the
answer” (Imbens, 2020, p. 1132). In other words, SCM is suitable for
investigating theoretical models with possible causal queries about
identification. Given a particular causal story, SCM can tell us which and
why specific causal quantities are identifiable; for instance, the strength
of a causal effect can be identified (reduced) by a unique formula
comprising only statistical terms.3 Pearl (2019) applies SCM to the
Match, Oxygen, and Fire example to identify quantities of causal suffi-
ciency. This paper borrows Pearl’s example to introduce SCM, but instead
focuses on quantities of different types of causal effect. Using SCM’s
well-established causal semantics, we can articulate causal in-
terpretations of those causal effects.

The paper will run as follows. Section 2 briefly introduces the stan-
dard procedure of heritability analysis in situations where there are no
gene–environment interactions or covariations, which we refer to as the
“standard model.” We briefly present the three problems often cited in
the literature—interaction (in its vernacular sense), locality, and tauto-
logy—and respond to them to delimit the possible scope of a causal
interpretation of heritability. Section 3 presents two further obstacles
posited for the causal interpretation of heritability: interaction (in its
statistical sense) and covariation. Section 4 introduces the SCM frame-
work and applies it to the standard model of heritability analysis. Our
results broadly agree with the current consensus; however, SCM expli-
cates the specific type of causal effect reflected by standard heritability.
Section 5 illustrates why interaction and covariation render heritability
estimates via ANOVA misleading and shows the causal interpretations
that SCM can offer. By extending the application of SCM to an individual-
level analysis, we conclude that SCM can serve as a powerful tool to
identify genetic causation in more sophisticated ways than is possible via
traditional ANOVA.
1 Gebharter (2017, Chapter 5) also argued that recent developments in causal
modeling modify Woodward’s original framework in such a way to clarify the
notion of a possible intervention.
2 In general, we take a causal effect to refer to a change in an effect variable

due to an intervention on a causal variable. Since we can ask different causal
questions led by particular interventions on the cause, the answers provided
imply specific types of causal effect. A formal and generic notion of causal effect
within SCM is introduced in Section 4, from which different types of causal
effect can be derived.
3 Note here that the causal effect can be estimated if data for these terms are

provided. However, in practice, scientists often only have partial causal stories;
therefore, the requirement for sufficient causal knowledge limits the scope of the
applicability of SCM for this purpose.
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2. The standard model of heritability analysis

ANOVA was first introduced by R. A. Fisher (1918) and has become
the primary method for classical quantitative genetics. According to the
standard model, for a certain phenotype (e.g., plant height), the pheno-
typic variance of a population (VP) can be decomposed into the genotypic
variance (VG) and the environmental variance (VE). In its simplest form,
we have:

VP ¼ VG þ VE: (1)

From there, broad sense heritability (H2) is defined as:

H2 ¼ VG

VP
: (2)

H2 measures how much of the total phenotypic variance is due4 to
genotypic differences. In comparison, the narrow sense heritability (h2)
measures the proportion of phenotypic variance due to alleles trans-
mitted from parents to offspring (Falconer&Mackay, 1996, p. 123). h2 is
used primarily in breeding studies and by theorists concerned with
making evolutionary projections (Downes & Matthews, 2020). Since we
are concerned with genetic causation within one generation, we will use
“heritability” to refer to H2 throughout the rest of this paper. Another
notion of heritability relies on parent–offspring regression rather than
ANOVA (see Godfrey-Smith, 2007; Jacquard, 1983; Bourrat, 2022;
Okasha, 2006). However, we will not discuss it here because of the close
links between this latter notion and h2.5

The standard procedure of heritability analysis can be presented
using an example. Suppose a population of individual plants with
various heights. Assume that the individuals only differ in their ge-
notypes at particular loci (g1 and g2) and in their environment with
different temperatures (e1, e2, and e3), which results in six subsets of
ðg; eÞ combinations. This means that other factors affecting height are
randomized or remain constant. Suppose that each subset has an
equal number of individuals and that differences in height within
each subset are too small to be significant. The average height values
for the six subsets (hypothetically) observed are presented in Table 1.
For instance, the value of ðg1; e1Þ is 5, meaning that the average
height of g1 individuals living in e1 is 5 units. The heritability esti-
mated from Table 1 represents the heritability of the original
population.

Here, g represents the phenotypic value for a given genotype aver-
aged over all environments, e the value for a given environment averaged
over all genotypes, and p the grand mean. Hence, VP is calculated by
squaring every number deviation from p, adding them and dividing the
result by 6 (there are six subsets). To obtain VG, we square the deviations
of g from p, add them, and divide by 2 (two genotypes). Similarly, we
obtain VE by squaring the deviations of e from p, adding them, and
dividing by 3 (three environments). The results are:
Table 1
A standard example where there is no
gene–environment interaction or
covariation.

e1 e2 e3 g

g1 5 10 15 10
g2 15 20 25 20
e 10 15 20 p ¼ 15

4 Although a causal gloss is often given to it, the term “due” here is not causal,
but purely statistical.
5 See Bourrat (2022) for an in-depth analysis of the relationship between the

two notions of heritability.



Table 2
An interaction example where there
is no covariation.

e1 e2 e3 g

g1 5 10 15 10
g2 27 20 13 20
e 16 15 14 p ¼ 15
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VPðSÞ ¼ 41:7; VGðSÞ ¼ 25; VEðSÞ ¼ 16:7;
6 The reaction norm is superior to heritability in the sense that, in principle,
one could derive a heritability estimate from reaction norms. However, herita-
bility summarizes some information that is not present in reaction norms, such
as the particular frequencies of genotypic alleles.
7 The standard example represents linear relations between G and P, and

between E and P. However, linearity is not a requirement for the additivity of
the effects of G and E. Suppose the statistical functions are P ¼ E2 for g1, and
P ¼ E2 þ 5 for g2, for which there are nonlinear relations between P and E. So
long as the curves of the reaction norms are parallel, the additivity assumption is
met.
where the subscript “S” stands for “standard.” With the components of
variance obtained, following Equation (2), heritability is:

H2
ðSÞ ¼

VGðSÞ
VPðSÞ

¼ 0:6:

This result is classically interpreted as genes causing 60% of the
height variance in the population. Accordingly, the environment causes
40% of the total variance. It provides an answer about the relative
importance of genes and the environment in causing phenotypic
variance.

There are three general problems invoked to show the limitations of
the classical causal interpretation of standard heritability. First, radical
interactionists might argue that the decomposition of VG and VE is ille-
gitimate because a phenotype is always the product of an interaction
between genes and the environment (i.e., when “interaction” is under-
stood in a common sense). This problem can be dispelled by noting the
consensus that genes and the environment are both necessary causes for
the phenotype (Sesardic, 2005, p. 59; Sterelny & Griffiths, 1999, pp. 15,
99). As Lewontin (2006 [1974], p. 520) claims, we should distinguish
two questions concerning causation. The first is to regard genes and the
environment as “two alternative and mutually exclusive causes” and ask
which causes the phenotype (ibid). The second is to recognize that both
are necessary for the phenotype and ask about the relative importance of
each. Heritability analysis is supposed to answer the second question
rather than the first. In our standard example, genes are a relatively more
important cause than the environment.

A second problem is that a heritability estimate is fundamentally local
since it “depends upon the actual distribution of genotypes and envi-
ronments in the particular population sampled” (Lewontin, 2006 [1974],
p. 521, emphasis added). When targeting a particular population, it is
inevitable that the observed genes and environmental factors do not
include all existing or potential causes. However, it is still legitimate to
ask whether the actual variation in genes or environment explains the
observed phenotypic variation in the population. This idea connects with
Kenneth Waters’ distinction between actual and potential difference
makers (Waters, 2007). An actual difference maker is a variable with
actual variation in the value that produces actual variation in the value of
the effect variable, whereas a potential difference maker only satisfies the
counterfactual patterns specified by the interventionist theory, regardless
of whether the causal variable actually varies or causes actual differ-
ences. Therefore, it should be noted that heritability estimates amount to
measuring the actual genotypic influence against the phenotypic varia-
tion of a particular population (see also Bourrat, 2021b).

The third problem of heritability analysis is that it is tautological
(Lewontin, 2006 [1974], p. 521) since one can estimate heritability
without knowing exact information about genes (e.g., the DNA sequence)
and environment. In the standard example, we do not need to know the
precise difference between g1 and g2; we only require the phenotypic
difference due to the difference between them. As we see it, the oddity of
tautology arises when heritability analysis is conceived incorrectly as a
mechanism-elucidating approach. If we want to know the causal mech-
anism involved between genes and the environment for producing phe-
notypes, exact information about each will be required. However, as
James Tabery argues (Tabery, 2014, p. 5), heritability analysis represents
a different approach that searches for the causes of variation in the
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population (see also Lynch, 2021). As we argue in Section 5.3, SCM gives
the causal effect of genes on phenotypic variance based on a theory about
causal mechanisms, which inherently bridges the gap between these two
approaches.

To summarize, as many authors agree, heritability estimates in the
conditions of the standard model measure how much of the phenotypic
variation is determined by the actual difference of genotypes, compared to
the environment, in a particular population. In contrast with the general
claim that genes cause phenotypes, standard heritability reflects a very
restricted sense of causal influence (Taylor, 2006). Before using SCM to
examine this limited type of causal effect more closely, we present two
obstacles to interpreting heritability estimates causally in the following
section.

3. Two obstacles for a causal interpretation of heritability

The standard model we presented in the previous section makes two
unrealistic assumptions: the effects of genes and the environment are (1)
additive and (2) causally independent. When the additivity assumption is
violated, there will be gene–environment interactions; when the inde-
pendence assumption is not met, there will be gene–environment co-
variations. Each of these consequences leads traditionally defined
heritability to lose its causal meaning. We first examine interaction with
an example, then turn to covariation.

First, recall the standard example. Label the genotypic, environ-
mental, and phenotypic variables as G, E, and P, respectively. Here,G and
E refer to physical variables rather than phenotype units. The statistical
function of these three variables can be summarized from the data in
Table 1 as follows:

PðSÞ ¼ �10 þ 10G þ 5E;

where, again, the subscript “S” stands for “standard.”
Interpreting this function causally, the causal effects of G and E on P

are additive. This is so because the total phenotypic effect of a given
genotypic change and a given environmental change equals the sum of
each effect. This additive relation can be recognized more easily using
reaction norms (Sterelny&Griffiths, 1999, p. 15). A reaction norm shows
the pattern of phenotypic values of a genotype across a range of envi-
ronments.6 If we draw the reaction norms of g1 and g2 together, we
obtain the graphic representation of Fig. 1a where the two lines are
parallel. This parallel pattern means that the phenotypic difference made
by a given genotypic change (from g1 to g2, for instance) is the same
across all environments, and the phenotypic difference made by a given
environmental change is the same for both genotypes. In other words, the
phenotypic effect of G (or E) does not depend on the value of E (or G).7

Contrast this with a situation where the effects of G and E on P are
nonadditive. Using reaction norms, this is manifested by the lines being
nonparallel or even crossing, such as in Fig. 1b. In this case, the pheno-
typic effect of G (or E) does depend on the value of E (or G). It is said that
there is a gene–environment statistical interaction (often denoted as G �
E), which posits a fundamental obstacle to interpreting ANOVA herita-
bility estimates causally (Sesardic, 2005, p. 52; Lewontin, 2006 [1974],
p. 522; Tal, 2012, p. 227; Downes & Matthews, 2020). An example of
interaction (with no covariation) that corresponds to the reaction norms



Fig. 1. Reaction norms for the additive and nonadditive examples. (a) the reaction norms for the standard example in Table 1; (b) the reaction norms for the
interaction example in Table 2.

8 However, the average of ΔVALL�g1
PðIÞ and ΔVALL�g2

PðIÞ is equal to H2
ðIÞ. Section 5.1

addresses this point in further detail.
9 Later, Fisher replied: “dear Hogben, I think I see your point now. You are on

the question of non-linear interaction of environment and heredity. The analysis
of variance and covariance is only a quadratic analysis and as such only con-
siders additive effects” (cited in Tabery, 2014, p. 33, emphasis added).
10 Following Pearl (2009), randomization can be seen as an intervention in the
sense that “subjects are ‘forced’ to take one treatment or another in accordance
with the experimental protocol, regardless of their natural inclination” (p. 332).
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in Fig. 1b is presented in Table 2. Here, the phenotypic effect of the
change of genotypes (from g1 to g2, for instance) does depend on the
environment in which individuals live: it is 22 units in e1, 10 units in e2,
and �2 units in e3.

If one performs an ANOVA from Table 2, the results are as follows:

VPðIÞ ¼ 49:7; VGðIÞ ¼ 25; VEðIÞ ¼ 0:7;

where the subscript “I” stands for “interaction.”
The sum of VGðIÞ and VEðIÞ is smaller than VPðIÞ; therefore, Equation (1)

must include a third term we denote as VG�E , which represents the
remaining variance due to statistical interaction. Thus, we obtain:

VPðIÞ ¼ VGðIÞ þ VEðIÞ þ VG�EðIÞ: (3)

In our example, we can calculate that VG�EðIÞ ¼ 24, which is rela-
tively large compared to VGðIÞ and VEðIÞ. If we apply the heritability for-
mula anyway, we obtain H2

ðIÞ ¼ 0:503.

While H2
ðIÞ is statistically correct, its causal interpretation is prob-

lematic. The detection of statistical interaction indicates that the two
causes are interdependent in influencing P. This challenges the decom-
position of VP into VG and VE because, as argued by Tal (2012, p. 234),
“attempting to separate the effects of genes and environment under
substantial G � E is futile, since the interaction component is ultimately
some unknown combination of G and E” (original emphasis). In practice, if
the interaction term is relatively small, one can ignore it to provide
adequate heritability estimates. However, there is no guarantee that, in
general, the interaction is not substantial in nature. For example, there is
emerging evidence of substantial interaction in psychiatric disorders;
therefore, deliberate testing of interaction hypotheses involving
meta-analysis has been suggested (Moffitt et al., 2005). It has been
common knowledge that—without evidence that substantial interaction
is, in fact, rare—additivity cannot be assumed a priori.

The obstacle posited by interaction can also be presented in an
interventionist way (we revisit the notion of intervention in Section 4). In
the 1930s, Lancelot Hogben wrote to Fisher regarding a problem. When
the lines of reaction norms are nonparallel, given heritability estimate x,
it does not follow that “the variance would be reduced by x percent if
there were no genetic difference” (Hogben, cited in Tabery, 2014, p. 29).
To make Hogben’s point concrete, let us examine our interaction
example in Table 2. Given two values of G, we have two ways to inter-
vene on G to eliminate genetic difference: either by changing g2 in-
dividuals in the population into g1 (resulting in a population only
composed of g1 individuals) or changing g1 individuals into g2 (resulting
in a population of g2 individuals). The remaining phenotypic variances of
these two interventions can be calculated as:

VALL�g1
PðIÞ ¼ 32:7; VALL�g2

PðIÞ ¼ 16:7:
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Given VPðIÞ ¼ 49:7, the reduced percentages of phenotypic variance
are:

ΔVALL�g1
PðIÞ ¼ 0:342; ΔVALL�g2

PðIÞ ¼ 0:664:

If the heritability estimate H2
ðIÞ ¼ 0:503 were to measure how much

of the phenotypic variance is caused by genotypic difference, the vari-
ance should be reduced by 50.3% when the genotypic difference is
eliminated. However, neither of the above two estimates is equal to H2

ðIÞ.
8

Hence, in the presence of interaction, it would be mistaken to interpret
H2

ðIÞ causally as representing the actual causal effect of genes on
phenotype.

The discrepancy between ΔVALL�g1
PðIÞ and ΔVALL�g2

PðIÞ is due to the effects

ofG and E interacting nonadditively.9 Recall the standard example where
the additivity assumption is met. We revisit this point in more detail in
Section 4; however, suffice to say here that if one were to perform the two
interventions in the standard example, the remaining phenotypic vari-
ances would be equal, resulting in equal reduced percentages of variance
justifying a causal interpretation of standard heritability. Our analysis in
the interaction example using SCM in Section 5.1 represents a step
further toward understanding the causal implication of nonadditivity and
addresses recent calls in behavioral genetics and epidemiology to
investigate the notion of interaction further (e.g., Baye et al., 2011;
Darling et al., 2016).

The standard model of heritability analysis also assumes that G and E
are either causally independent in nature or made independent in
experimental settings. Each subset has an equal size (or statistically
insignificant differences) in the standard example, meaning that geno-
types are distributed randomly in environments. This randomization can
be achieved in careful experimental designs even if G and E are causally
dependent in nature. A randomized design eliminates the causal in-
fluences between G and E; hence, an absence of covariation between the
two variables can be assumed.10 However, in observational or natural
studies, there is often a significant covariance between G and E, which



Table 3
A covariation example where there is no interaction.

e1 e2 e3 g

g1 5 (10) 10 (15) 15 (20) 11.11
g2 15 (15) 20 (20) 25 (20) 20.45
e 11 15.71 20 p ¼ 16.25
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indicates an unknown (direct or indirect) causal relation between them.11

A covariation example (with no interaction) where the genotypes are
distributed nonrandomly is presented in Table 3.12 The size for each
subset is given after the values of phenotype. For instance, the size for the
subset ðg1; e1Þ is 10.

In this case, the variances estimated by ANOVA should be weighted
by the relative sizes. The results are:

VPðCÞ ¼ 37:2; VGðCÞ ¼ 21:6; VEðCÞ ¼ 12:6;

where the subscript “C” stands for “covariation.”
The sum of VGðCÞ and VEðCÞ is, again, smaller than VPðCÞ. Since there is

no interaction in our covariation example, Equation (1) must include
another term we denote as 2covGE,13 which represents the remaining
variance due to some unknown dependence between G and E. Thus, we
have:

VPðCÞ ¼ VGðCÞ þ VEðCÞ þ 2covGEðCÞ: (4)

Here, 2covGE represents the component of phenotypic variance re-
flected by the covariance betweenG and E, indicating an unknown causal
relation. In our case, 2covGE ¼ 3. Applying the heritability equation, we
get H2

ðCÞ ¼ 0:581.
It has long been debated whether this kind of heritability should

include 2covGE (e.g., Block&Dworkin, 1974; Jencks, 1980; Sober, 2001).
Lynch and Bourrat (2017) conclude that if the origin of covariance can be
traced to genotypic causes, 2covGE should be incorporated in measures of
heritability. Since an unobserved causal dependence might confound the
causal interpretation of statistical results, such as in cases of Simpson’s
paradox (Pearl & Mackenzie, 2018, Chapter 5), there is broad consensus
that without information on the causal relation between G and E, the
presence of covariation posits a fundamental obstacle for causally
interpreting ANOVA heritability.

A complete model combining interaction and covariation can be
presented as:

VP ¼ VG þ VE þ VG�E þ 2covGE: (5)

To conclude, the presence of VG�E and 2covGE raises the question of
whether we should include more terms than VG in heritability for it to be
interpretable causally. Put differently, when the actual causal story is
more complicated than that assumed by the standard model, heritability
estimated via ANOVA can no longer reflect the relative importance of
genotypes for the phenotypic variance. A promising approach is to appeal
to SCM, which does not assume additivity or independence and offers
structural functions and causal graphs to present complex causal
relationships.
11 Here, we do not consider the situation that a significant covariation between
G and E is due to a sample selection bias (a biased selection of P might yield a
statistical correlation between G and E).
12 Reaction norms can be plotted based on Table 3, which will be the same as
in Fig. 1a. However, since the two genotypes are not equally frequent in the
whole population, the resulting reaction norms do not correspond to intervening
in an actual population.
13 The reason that the added term is 2covGE rather than covGE stems from the
properties of the variance of a sum of two correlated variables. For two variables
X and Y , varðX þ YÞ ¼ varðXÞ þ varðYÞ þ 2covðX;YÞ.
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4. Standard heritability estimates using SCM

Consider the following example, modified from Pearl (2019). Amatch
is struck, igniting a fire in a room. We pick out two causes for the fire-
—striking the match and the presence of oxygen—and ask the question:
“which one caused the fire?” The usual answer would be “striking the
match.” Note, however, that both factors are necessary because the fire
would not have occurred in the absence of either. Why, then, do we
consider striking the match to be a more responsible cause for the fire?
We first build a causal model for this example.

Following the SCM framework, a causal model M ¼ < U; V ; F >

represents causal relationships among endogenous14 variables V via a set
of functions F (Pearl, 2009, p. 203). U is a set of background variables
(exogenous variables) determined by factors outside the model. The
value of each endogenous variable is determined causally by its direct
causes (or parents) PAi ⊆ V and Ui ⊆ U (see also the Causal Markov
Condition in Pearl, 2009, p. 30), which is presented by each function. If
we can obtain the joint probability distribution of U, we can define a
probability distribution over V (Pearl, 2009, p. 205). Consider FI (FI ¼ 1
for the presence of a fire, FI ¼ 0 for the absence of it),MA (MA ¼ 1 for
striking the match,MA ¼ 0 for not striking it), and OX (OX ¼ 1 for the
presence of oxygen, OX ¼ 0 for the absence of it) to be endogenous
variables. Consider UOX and UMA to be background variables causally
determining OX andMA, respectively. Assume that the fire is determined
solely by the match and oxygen. Using lower case letters to denote a
variable’s value, the structural functions of M for this example are:

MA ¼ fMAðuMAÞ; OX ¼ fOXðuOXÞ; FI ¼ fFIðma; oxÞ:

fFI : FI ¼ MA*OX:

An SCM corresponds to a causal graph G where each node corre-
sponds to a variable and the edges point from causal parent(s) to causal
offspring. Any sequence of consecutive edges in a causal graph, regard-
less of its directionality, is called a path. For instance, an edge pointing
fromMA to FI represents a causal path fromMA to FI. The corresponding
causal graph GðMÞ is as in Fig. 2a.

The “do-operator” or “doð:Þ” in the SCM framework represents the
operation of an intervention. Following the interventionist theories of
causation, a variable X is a cause of a variable Y , if an intervention on X
produces a change in the value of Y (Woodward, 2003). Intervention is
different from observation. Suppose there is a common cause Z of both X
and Y. When the value of Z changes, X and Y will both change. Hence, if
we only observe a change in X followed by a change in Y , we cannot
conclude safely that Y’s change is caused by X’s change. In contrast, an
Fig. 2. Causal graphs for the Oxygen, Match, and Fire example, modified from
Pearl (2019, Figs. 1 and 3). (a) GðMÞ is the corresponding causal graph for the
pre-intervention causal model M; (b) GðMMA¼maÞ is the corresponding causal
graph for the post-intervention causal model MMA¼ma.

14 Endogenous variables are those variables an experimenter wishes to include
in the model.



Fig. 3. Causal graph GðMðSÞÞ for the causal model MðSÞ.
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intervention doðX ¼ xÞ means to disconnect X from its former causal
parents and set its value to x. If this operation produces a change in Y’s
value, we can establish that there is a causal relationship between X and
Y . In this sense, doð:Þ emulates a virtual intervention on the world from
which the data are collected. It operates via replacing the structural
function of the intervened-upon variable with the value specified by the
intervention. The new model represents the causal story of the
post-intervention world.

Let us return to our example. We can obtain doðMA ¼ maÞ by
replacing the former fMA with MA ¼ ma, and obtain a new model
MMA¼ma. The corresponding causal graph GðMMA¼maÞ is represented in
Fig. 2b where the edge from UMA toMA is deleted since, according to the
new structural function,MA is now held constant (by intervention) at the
value of ma, rather than being affected by UMA.

A formal notion of the causal effect of X on Y is then defined as a
function from doðX ¼ xÞ to the probability distribution of Y in the new
model, denoted as PðyjdoðxÞÞ (Pearl, 2009, p. 70). Note here that x and y
indicate that every value of X and Y should be computed. In other words,
this definition defines a relationship between variables. Since a variable is
constructed from each of its values, the causal effect of specific values (or
events) is also defined. For instance, PðFI ¼ 1jdoðMA ¼ 1ÞÞ represents
the causal effect of the match-striking event (in the interventionist sense)
on the event of the presence of a fire in the room.15 Traditionally,
judgments of causal strength (or causal importance) concern the rela-
tionship between events rather than variables (as defined by the formal
notion).16 Based on the formal causal effect, specific causal effects for
different events can be compared against the same background to answer
questions about relative importance.

In our case, a comparison of causal importance can be made in
terms of how the probability of the presence of fire PðFI ¼ 1Þ would
change given interventions on each cause from absent to present. This
is because, intuitively speaking, if the change of a cause from absent to
present makes a significant difference to the probability of the pres-
ence of the effect, we would think that the cause is an important one.
In formalism, we can compare the following two formulas:
½PðFI ¼ 1jdoðMA ¼ 1ÞÞ � PðFI ¼ 1jdoðMA ¼ 0ÞÞ� and ½PðFI ¼
1jdoðOX ¼ 1ÞÞ � PðFI ¼ 1jdoðOX ¼ 0ÞÞ�. However, these two
formulas cannot be compared directly unless we have conducted exact
randomized controlled experiments. In practice, we often have partial
interventional information or only observational data.

To address this problem, Pearl (2009, p. 92) introduced a graphical
test of identification with a set of “identifying models” for formulas
15 Here, the term “event” is used in a commonsense way that can be repre-
sented by the values of a variable.
16 Causal importance has been related to necessity and sufficiency. A cause is
necessary for an effect if the former’s absence leads to the latter’s absence; a
cause is sufficient for an effect if the former’s presence leads to the latter’s
presence. This distinction goes back to J. S. Mill (1843). Semi-formal explica-
tions have been provided in Good (1961), Mackie (1965), and Rothman (1976).
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including the do-operator, such as PðyjdoðxÞÞ. Given a certain SCM with a
corresponding causal graph, if that causal graph is identical to (or can be
transformed into) one of the identifying models, the quantity of
PðyjdoðxÞÞ is identifiable. That is, it can be reduced to a unique formula
comprising only observational probability distributions. When data can
be provided, the quantity is estimated by the reduction formula. Different
identifying models require different reduction formulas (Section 5.2 will
discuss this further). In our example in Fig. 2a, where there is no con-
founding between MA and FI and between OX and FI, we can apply
Equation (6) as the reduction formula:

PðyjdoðxÞ Þ ¼ PðyjxÞ: (6)

Hence, we have17:

PðFI ¼ 1jdoðMA ¼ 1Þ Þ � PðFI ¼ 1jdoðMA ¼ 0Þ Þ ¼ PðFI ¼ 1jMA

¼ 1Þ � PðFI ¼ 1jMA ¼ 0Þ ¼ PðFI ¼ 1jMA ¼ 1Þ ¼ PðOX
¼ 1Þ:

and

PðFI ¼ 1jdoðOX ¼ 1ÞÞ � PðFI ¼ 1jdoðOX ¼ 0ÞÞ
¼ PðFI ¼ 1jOX ¼ 1Þ� PðFI ¼ 1jOX ¼ 0Þ
¼ PðFI ¼ 1jOX ¼ 1Þ ¼ PðMA ¼ 1Þ:

In a terrestrial context on Earth, match-lighting is a much rarer event
than the presence of oxygen, such that PðMA ¼ 1Þ ≪ PðOX ¼ 1Þ � 1.
This means striking the match is a far more efficient cause for the fire.
These results precisely reflect our intuition of the relative importance of
match-lighting. Note that the generality of Equation (6) and other
reduction formulas mean that they can be applied for any probability
distribution of certain events in different contexts.

We now apply SCM to the standard model of heritability analysis.
Recall the standard example of Table 1. Since other relevant factors are
randomized or remain constant, the phenotypic difference is entirely
caused by G and E. Assign UG and UE to stand for background factors
determining the values ofG and E. Since we also supposed that genotypes
are distributed randomly in environments, G and E are causally inde-
pendent. Thus, we have the causal model MðSÞ:

G ¼ fðSÞGðuGÞ; E ¼ fðSÞEðuEÞ; P ¼ fðSÞPðg; eÞ;

and

fðSÞP : P ¼ �10 þ 10G þ 5E;

where “S” stands for “standard.” Fig. 3 represents the corresponding
causal graph GðMðSÞÞ.

Three remarks should be made aboutMðSÞ. First,MðSÞ combines all the
heritable causes of the phenotype into one variable G, and all the envi-
ronmental causes into one variable E. A more detailed SCM, with more
fine-grained variables for genotypic and environmental causes, could be
given for other applications. Second and related, the direct cause is a
relative term. A causal graph shows a direct cause with an arrow edge
from a cause variable to its effect variable. This does not exclude the
possibility of intermediate variables in other SCMs or the real world.
Third, the values of G and E are not the binary values of “presence” and
“absence” in the Oxygen, Match, and Fire example, but alternative
17 Pearl (2009) explores causal necessity and sufficiency in terms of SCM,
resulting in a measure of causal strength with the notions of the “probability of
sufficiency” (PS), “probability of necessity” (PN), and “probability of necessity
and sufficiency” (PNS). If a change of the cause from absent to present cannot,
under any circumstance, make the effect change from present to absent,
following Pearl (2009, p. 291), PNS ¼ PðY ¼ 1jdoðX ¼ 1ÞÞ � PðY ¼
1jdoðX ¼ 0ÞÞ, which is the same as the comparison we made here.



Table 4
The causal effect of G on P in the standard example presented in Table 1.

doðg1Þ doðg2Þ
p PðpÞ p PðpÞ
5 (e1) 1=3 15 (e1) 1=3
10 (e2) 1=3 20 (e2) 1=3
15 (e3) 1=3 25 (e3) 1=3
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genotypes and alternative environments. Having assumed that the pres-
ence of a genotype and an environment is necessary for the presence of a
phenotype,MðSÞ concerns which kinds of genotype and environment will
cause which type of phenotype. Hence, an intervention on G does not
mean bringing about (or removing) a genotype but fixing it at one
particular genotypic value.

By examining MðSÞ and GðMðSÞÞ, we can see the assumptions of addi-
tivity and independence made by the standard model. First, GðMðSÞÞ
shows that there is no causal path between G and E, indicating causal
independence between G and E. Although this remark may appear
insignificant in the context of the standard model, a departure from this
assumption (to which we return in Section 5.2) will prove crucial. Sec-
ond, although GðMðSÞÞ has the same causal structure as GðMÞ in the Ox-
ygen, Match, and Fire example, the structural functions are notably
different. In the case of fðSÞP, the phenotypic effects of G and E are ad-
ditive, indicating no gene–environment interaction. In contrast, fFI tells
us that there is an interaction between MA and OX concerning FI. That
said, the causal effect of a change in MA will depend on the value at
which OX is set. For instance, when oxygen is absent, changing the value
of MA from 0 to 1 will lead to no change in FI. The fact that SCM can
capture the Oxygen, Match, and Fire example gives us confidence that
SCM can also provide legitimate causal analyses in interaction cases
involving genetic causation (we revisit this in Section 5.1).

The most relevant feature of SCM for our purpose is the conceptual
distinction between causality and statistics. Although fðSÞP has the same
format as the statistical function amongG, E, and P given in Section 3, the
difference between them is that a structural function represents an
invariant mechanism that determines the values of the left variable from
those of the right variables.18 Hence, an SCM comprising structural
functions represents the causal theory covering a set of causal worlds
(actual or possible); each causal world has a particular probability dis-
tribution of exogenous variables (Pearl, 2009, p. 207). The usefulness of
the distinction between causality and statistics, as Pearl sees it—and we
agree—“lies primarily in helping investigators trace the assumptions that
are needed to support various types of scientific claims” (2009, p. 334).

One might notice that causal graphs resemble path diagrams in path
analysis in evolutionary genetics (e.g., Otsuka, 2014). This should not
come as a surprise since path analysis is an ancestor of SCM. As such, it
can be used to estimate the structural parameters inan SCM (e.g., the
numbers “10” and “5” in fðSÞP) by regression coefficients in linear systems.
However, a structural function, in itself, does not depend on the method
used to produce the estimation. SCM can accommodate a broader range
of assumptions, such as nonlinearity or even unspecified parameters (for
further details, see Pearl, 2009, p. 367). It should be noted that modern
regression techniques have been designed to devise innovative experi-
mental tools such as instrumental variables and regression discontinuity
designs. This last point is important in the context where it remains un-
certain whether SCM is a more powerful approach than regression ap-
proaches for empirical work (see Imbens, 2020, who argues that
regression approaches are preferable in economics). As we see it, SCM
and regression techniques are complementary tools for causal analysis;
each has relative merits for different fields and different tasks.

If we return to the standard example, according to Pearl’s graphical
test of identification, we can reduce PðSÞðpjdoðgÞÞ by applying Equation
(6). PðSÞðpjgÞ can be obtained directly from observational data in Table 1.
Thus, we obtain the result shown in Table 4. The values of P are shown in
the columns of p, and the values of E for every p are shown in the
brackets.

The post-intervention probability distribution of P shown in Table 4
presents the formal causal effect of G on P. However, heritability is
18 Here, “invariant” means that the causal mechanism represented by a struc-
tural function is modular and stable (for details, see Woodward, 2003, Chapter
6). This notion of invariance differs from but is compatible with the formal
measure of causal invariance proposed by Bourrat (2021a).
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estimated by the ratio of phenotypic variance. To link the generic causal
effect from SCM to heritability, we derive variance from the probability
distribution. According to Table 4, although the post-intervention
phenotypic values are different for doðg1Þ (the left two columns in
Table 4) and doðg2Þ (the right two columns in Table 4), the post-
intervention phenotypic variances are equal such that:

Vdoðg1Þ
PðsÞ ¼ Vdoðg2Þ

PðsÞ ¼ 16:7:

Given pre-intervention variance VPðsÞ ¼ 41:7, the reduced percent-
ages of phenotypic variance are:

ΔVdoðg1Þ
PðsÞ ¼ ΔVdoðg2Þ

PðsÞ ¼ ð41:7 � 16:7Þ
.
41:7 ¼ 0:60:

Compare the above two estimates to the ANOVA heritability estimate
in Section 2 (H2

ðSÞ ¼ 0:60). The three results are all equal. The estimates of
the reduced percentages of variance, precisely speaking, concern a
particular type of causal effect—that is, the causal effect of eliminating the
difference in G (by intervention) on the reduction in the variance for P.
Accordingly, the causal effect of eliminating the difference in E (by
intervention) on the reduction in the variance for P is 0.4. Therefore, in
comparing the causal effects of eliminating the difference in each cause
on the reduction in the variance for P, ANOVA heritability estimates are
said to reflect the relative importance of genetic cause on the phenotype.

Two remarks should be made about this type of causal effect—one on
the measure of the effect and the other on the specific intervention on the
cause. For the former, since the variance of P is a measurement sum-
marizing all the values of P, it depends on the specific population tar-
geted by experimenters. That said, this type of causal effect depends on
the values of G and E actually manifested in the population; therefore, it
might differ for another population with different realizations of G and E
values. This explains why heritability estimates are fundamentally local.
For the latter, the two estimates, which depend on two interventions,
should be seen as two separated results. According toMðSÞ, the variable G
has two mutually exclusive values, reflecting our assumption that g1 and
g2 are genotypic variations, and an individual cannot simultaneously
have both g1 and g2. It follows that any intervention doðgÞ, by definition
of the do-operator, can only be realized as either doðg1Þ or doðg2Þ. In
contrast with doðg1; e1Þ, where G is intervened on to become g1; and E is
intervened on simultaneously to become e1, doðg1; g2Þ is meaningless.19

Examining this more closely, ΔVdoðg1Þ
PðsÞ presents the causal effect of

eliminating genotypic differences by fixing the whole population at g1 on

the reduction in the total phenotypic variance; ΔVdoðg2Þ
PðsÞ presents the

causal effect of eliminating genotypic differences at g2 on reducing
phenotypic variance. Since the two estimates are equal, either doðg1Þ or
doðg2Þ in eliminating genotypic differences would reduce the phenotypic
variance by 60%.20 We can infer that the causal effect of eliminating
genotypic differences by setting the whole population at any genotypic
19 The same occurs when there are three genotypes (or more): g1, g2, and g3. It
makes no sense to perform doðg1; g2; g3Þ, or any combination of two of these.
20 When there are three or more genotypes exhibited in the population,
assuming no covariation or interaction, the causal effects of the elimination of
difference in G at any genotypes on the change in the variance for P would all be
equal.



Table 5
The causal effect of G on P in the interaction example presented in Table 2.

doðg1Þ doðg2Þ
p PðpÞ p PðpÞ
5 ðe1Þ 1=3 27 ðe1Þ 1=3
10 ðe2Þ 1=3 20 ðe2Þ 1=3
15 ðe3Þ 1=3 13 ðe3Þ 1=3
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value on the change of phenotypic variance is 60%. Therefore, H2
ðSÞ,

which is equal to ΔVdoðg1Þ
PðsÞ and ΔVdoðg2Þ

PðsÞ , is a summary of the causal effects

of eliminating genotypic differences on the change of phenotypic vari-
ance. However, when the causal effect of eliminating genotypic differ-
ences by setting the whole population at a given genotypic value is different
from that at another genotypic value (as is the case in interaction cases), we
can no longer infer a single type of causal effect across all the values of G.
In this case, a substantial causal analysis should involve information
regarding the precise interventions on G with different genotypic values.

To conclude, the application of SCM to the standard model grounds
standard heritability estimates in causal terms. This is consistent with
Bourrat (2021b), Lynch and Bourrat (2017), Sesardic (2005), and Tal
(2012). However, SCM provides a more explicable causal interpretation
of genetic causation than the classical interpretation given by the stan-
dard model of heritability analysis.

5. Interaction and covariation: an SCM approach

This section demonstrates why interaction and covariation posit
fundamental obstacles for a causal interpretation of ANOVA heritability
estimates within SCM. Further, it illustrates the kind of causal analysis
that can be derived from SCM. Section 5.1 addresses interaction, Section
5.2 addresses covariation, and Section 5.3 extends the application of SCM
to additional types of causal effect that can provide answers to
individual-level questions.

5.1. Interaction

Recall the interaction example. To apply SCM, we first build a causal
model MðIÞ, where the subscript“I” stands for “interaction.” We have the
following structural functions for MðIÞ:

G ¼ fðIÞGðuGÞ; E ¼ fðIÞEðuEÞ; P ¼ fðIÞPðg; eÞ:
In the presence of interaction, the genotypic effect and the environ-

mental effect are nonadditive, and fðIÞP does not have a similar regression
format as fðSÞP in MðSÞ. Since G and E are causally independent in this
example, the corresponding causal graph GðMðIÞÞ is the same as GðMðSÞÞ in
Fig. 3. The graphical identification depends solely on the causal graph;
therefore, we can also apply Equation (6) in this example, as shown in
Table 5:

We then calculate the post-intervention phenotypic variances for
doðg1Þ and doðg2Þ:

Vdoðg1Þ
PðIÞ ¼ 16:7; Vdoðg2Þ

PðIÞ ¼ 32:7:

Given VPðIÞ ¼ 49:7, the reduced percentages of phenotypic variance
are:

ΔVdoðg1Þ
PðIÞ ¼ 0:664; ΔVdoðg2Þ

PðIÞ ¼ 0:342:21

Hence, the causal effect of eliminating genotypic difference by fixing
the population at g1 on the reduction of phenotypic variance is 66.4%,
and that at g2 is 34.2%. In contrast with the standard example, the two
estimates are now unequal.22 Here, SCM provides an explanation that is
consistent with Hogben’s problem.

As mentioned before, a SCM with a particular distribution of exoge-
nous variables represents a causal world. In this example, given the
phenotypic data (shown in Table 2) (hypothetically) collected from na-
ture or an experiment, which fixes the distribution of exogenous vari-
ables, we now possess complete causal information about the causal
21 These results are consistent with those from Hogben’s method of analysis
(see Section 3).
22 In the presence of interaction, when there are three or more genotypes, the
reduced percentages of phenotypic variance by intervening on all g1, g2, g3
(etc.) individuals, will be different.
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world. Denote this world with interaction as “wI .” To measure the causal
effect of G on the variance of P in wI , we virtually intervene on G:
namely, doðg1Þ resulting in wg1 with all g1 individuals, and doðg2Þ
resulting inwg2 with all g2 individuals. As we can see from Table 2, the g1
group (the first row in Table 2, which corresponds to wg1) and the g2
group (the second row in Table 2, which corresponds to wg2) exhibit
different degrees of phenotypic spread in specific environments. In
particular, 5 units per environmental change for wg1 and 7 units for wg2,
which leads to unequal phenotypic variances in wg1 and wg2, and further

leads to the inequality of ΔVdoðg1Þ
PðIÞ and ΔVdoðg2Þ

PðIÞ . In contrast, in the stan-

dard example (Table 1), the degrees of phenotypic spread in environ-
ments are the same for the g1 and g2 groups (5 units per environmental

change); hence, Vdoðg1Þ
PðsÞ and Vdoðg2Þ

PðsÞ are equal.

Now, a possible move is to average over ΔVdoðg1Þ
PðIÞ and ΔVdoðg2Þ

PðIÞ , which

amounts to 0:503, the heritability estimate obtained from ANOVA (H2
ðIÞ).

Does this average warrant a causal interpretation for H2
ðIÞ? As we see it,

the answer is twofold. First, it is not easy to see valuable applications of
this average in causal practice. As mentioned above, the two estimates
represent two separate results. We can manipulate the two numbers to
compute an average and assert that it means the average causal effect of
eliminating genotypic differences on the change of variance of P. How-
ever, we doubt that this sense of causal effect would be useful in causal
reasoning because it could lead to some serious misunderstandings.
Second, regardless of the application problem, this average does not
answer the question supposed to be answered by the heritability concept.
The fact that the two estimates are unequal means that there are two
different types of effects corresponding to two interventions on G. In this
case, we cannot infer a single type of causal effect of eliminating geno-
typic differences on the reduction of phenotypic variance. Hence,
ANOVA heritability estimates in the presence of interaction (such as H2

ðIÞ)

can no longer be used to answer the relative importance question.
To conclude, consistent with our analysis in Section 3, without equal

estimates for the causal effect of different genotypes on the change of
phenotypic variance, an ANOVA heritability estimate in the presence of
interaction cannot be interpreted as the relative importance of genetic
causation. Nevertheless, a legitimate causal analysis with the information
of each possible intervention on the genotypes can be specified by SCM.

5.2. Covariation

The standard model of heritability analysis also assumes that G and E
are causally independent. However, the presence of 2covGE , such as in our
covariation example, indicates some unknown causal relation between G
and E. Three kinds of causal structures are compatible with the presence
of 2covGE, as shown in Fig. 4.

First, there is a direct cause fromG to E, as presented in Fig. 4a. This can
occur when the genotype causally influences the individual’s choice of
different environments; that is, individuals with specific genotypes are
inclined to stay in particular environments. Second, there is a direct cause
from E to G, as presented in Fig. 4b. Recent developments in epigenetics
lead some authors to argue for a pluralistic view of heredity or inclusive
inheritance (Laland et al., 2015), including heritable epigenetic marks as
inheritedmaterial (Bourrat& Lu, 2017; Lu& Bourrat, 2018). Although this
might be rare in nature, it can occur when some heritable epigenetic marks



Fig. 5. A simple example of the back-door path. Considering the causal rela-
tionship from X to Y, X←Z→Y represents a back-door path.

Table 6
The causal effect of G on P in the covariation example of Fig. 4a.

doðg1Þ doðg2Þ
p PðpÞ p PðpÞ
5 ðe1Þ 2=9 15 ðe1Þ 3=11
10 ðe2Þ 3=9 20 ðe2Þ 4=11
15 ðe3Þ 4=9 25 ðe3Þ 4=11

Fig. 4. Possible causal graphs for the covariation example. (a) G(M(C)a) is the corresponding causal graph for M(C)a with a direct causal relationship from G to E (b)
G(M(C)b) is the corresponding causal graph for M(C)b with a direct causal relationship from E to G; (c) G(M(C)c) is the corresponding causal graph for with an un-
observable common cause for G and E, symbolised by the dashed arc.

24 A path is “unblocked” when it is not d-separated (see Pearl, 2009, pp. 16–17,
for the definition of d-separation).
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that have a causal influence on the phenotype are also influenced by
environmental factors during development23 (see also Tal et al., 2010).
Third, there is an unobservable common cause for G and E, as presented in
Fig. 4c. This occurs when an unknown (genotypic or environmental) cause
that experimenters do not include into G or E in the experimental design is
present.

According to Pearl’s graphical identification test, we have
PðCÞaðpjdoðgÞÞ for MðCÞa reduced by Equation (6), as shown in Table 6:

The post-intervention phenotypic variances can be calculated as:

Vdoðg1Þ
PðCÞa ¼ 15:4; Vdoðg2Þ

PðCÞa ¼ 15:7:

Given the pre-intervention phenotypic variance VPðCÞ ¼ 37:2, we
obtain the reduced percentages of variance as:

ΔVdoðg1Þ
PðCÞa ¼ 0:586; ΔVdoðg2Þ

PðCÞa ¼ 0:578:

Since the two estimates are unequal, we can only legitimately infer
two different types of causal effect of eliminating genotypic differences
by fixing the population at a particular genotypic value on the change in
phenotypic variance. In particular, given MðCÞa, the causal effect of
eliminating genotypic differences at g1 on the reduction of phenotypic
variance is 58.6%, and that at g2 is 57.8%. As we demonstrated in Section
5.1 with the interaction example, averaging these two values would not
adequately represent a single type of causal effect of eliminating geno-
typic differences on the change of phenotypic variance.

It should be noted that the causal effect identified here is the total
effect, which includes both direct and indirect effects. Conversely, in the
standard and interaction examples, there are no indirect effects, only
direct ones. A “direct effect” is defined in the SCM as a causal effect that is
not mediated by other variables. In Fig. 3, the effect of G on P is not
mediated by E. Hence, the total effect of eliminating the differences in G
on the change in the variance of P equals its direct effect. However, here
23 Here is a classic example of epigenetic inheritance (Morgan et al., 1999).
Mice with the same genotype display a range of colors of their fur, which are due
to a difference in DNA methylation levels on the promoter of the dominant
agouti gene. This epigenetic pattern can be inherited through generations.
Moreover, a diet rich in methyl donors might induce a phenotypic change via
the change of inherited epigenetic patterns.
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in Fig. 4a, G also indirectly influences P mediated by E; thus, the total
effects do not equal the direct effects. To disentangle the different con-
tributions of G to P (direct and indirect effects), to the extent this is
possible, requires some extra tools. Presenting such tools would exceed
the scope of this paper; see Pearl (2009, Chapter 4.5) for further details.

As for the causal structures of Fig. 4b and c, Equation (6) cannot be
applied because they include a confounding pattern.Whenmeasuring the
causal effect of X on Y , one should prevent the influence of any path with
a spurious correlation between X and Y . This kind of path is called a
“back-door path” and is defined as an unblocked path between X and Y
with arrows pointing at X.24 A common cause is a typical example of a
back-door path, as presented in Fig. 5. Apart from the direct path from X
to Y , there is an unblocked path between X and Y with an arrow pointing
at X (X ← Z → Y). The influence of this latter path would confound the
measurement of causal effect from X to Y .25

According to Pearl, it takes two steps to eliminate the influence of
back-door paths. First, a back-door path can be blocked by conditioning
certain variables to stop the back-door flow of statistical dependence
between X and Y . According to the definition of d-separation, in the
example of Fig. 5, via conditioning on Z, the originally unblocked back-
door path is now blocked. If there are multiple back-door paths from X to
Y , we should find a set of variables Z

0
that blocks all of them (see the

Back-Door criterion in Pearl, 2009, p. 78). Second, the causal effect from
X to Y can be given by adjusting for Z

0
. Adjustment amounts to parti-

tioning the population into homogeneous groups relative to Z
0
, assessing

the causal effect of X on Y in each homogenous group, and then aver-
aging26 the results. Hence, in the case with back-door paths, the formal
25 There are no back-door paths from G to P in Figs. 3 and 4a; therefore, the
causal effect of G on P can be reduced directly to observational probabilities
using Equation (6).
26 This sense of averaging should be distinguished from the sense mentioned in
Section 5.1. The latter means to average the causal effects of two separated
interventions, with each intervention operating on the total population. Here, it
means averaging the causal effects for subpopulations within one total popu-
lation, resulting in a single type of effect for this total population.



Table 8
An interaction and covariation example.

e1 e2 e3 g

g1 5 (10) 10 (15) 15 (20) 11.11
g2 27 (15) 20 (20) 13 (20) 19.36
e 18.2 15.71 14 p ¼ 15.65

Table 7
The causal effect of G on P in the covariation example of Fig. 4b and c.

doðg1Þ doðg2Þ
p PðpÞ p PðpÞ
5 ðe1Þ 5=20 15 ðe1Þ 5=20
10 ðe2Þ 7=20 20 ðe2Þ 7=20
15 ðe3Þ 8=20 25 ðe3Þ 8=20

27 The reasoning when there are three genotypes in the population is as fol-
lows. Given PðP ¼ 10jdoðg1Þ;e2Þ ¼ 1, this means that for a g2 or g3 individual
who lives in e2, the probability of its height being 10 units would be 1 if this
individual was g1 instead. Given g2 and g3 individuals’ original height p2 and
p3, respectively, if they were mutated to have g1, the resulting height change
would be 10 � p2 and 10 � p3 units, respectively. The same reasoning applies
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causal effect can be reduced by Equation (7) (Pearl, 2009, p. 79):

PðyjdoðxÞ Þ ¼
X
Z '

Pðyjx; z'ÞPðz'Þ: (7)

Since the variable E blocks the back-door path from G to P both in
Fig. 4b (G ← E → P) and in Fig. 4c (G ↔ E → P), we can apply
Equation (7) to both cases such that:

PðCÞb;cðpjdoðgÞ Þ ¼
X
E

Pðpjg; eÞPðeÞ:

The causal effect of G on P for MðCÞb and MðCÞc is given in Table 7:
Since the degrees of phenotypic spread in environments are the same

for g1 and g2 groups (5 units per environmental change), the post-
intervention phenotypic variances are equal for doðg1Þ and doðg2Þ:

Vdoðg1Þ
PðCÞb;c ¼ Vdoðg2Þ

PðCÞb;c ¼ 15:7:

Given the pre-intervention variance VPðCÞ ¼ 37:2, the reduced per-
centages of phenotypic variance are also equal:

Vdoðg1Þ
PðCÞb;c ¼ Vdoðg2Þ

PðCÞb;c ¼ 0:578:

This means that the reduced percentage of phenotypic variance by
eliminating genotypic differences by fixing the population at either
genotypic value is 57.8%. It follows that the causal effect of eliminating
genotypic differences on the change of phenotypic variance is 57.8%.
Hence, given MðCÞb or MðCÞc, the causal magnitude of the phenotypic
variance contributed by genotypic differences is 57.8%. Accordingly,
the contribution of the environmental differences is 42.2%. Thus, these
figures answer the question regarding the relative importance of genes
and the environment in causing the phenotypic variance in the
population.

However, the estimates are not the same as the heritability estimated
by ANOVA (H2

ðCÞ ¼ 0:581). The difference occurs precisely because the

standard model assumes G and E to be causally independent. GivenMðCÞb
or MðCÞc, the influence of G on P derived from the back-door path should
be eliminated in estimating the causal effect from G to P. The SCM
framework does this by implementing Equation (7). However, ANOVA
heritability analysis implicitly assumes independence without elimi-
nating the influence of back-door paths giving an overestimated result.

For MðCÞb and MðCÞc, a single type of causal effect of eliminating
genotypic differences on the change of phenotypic variance can be given;
whereas, forMðCÞa, we can only infer the causal effects at a given genotypic
value. This means that different causal theories will produce different
measurements of the causal effect. Hence, in the presence of covariation,
information about the causal relationship between G and E is required to
measure the causal effect of G on P accurately. Others have already raised
this point (see, e.g., Lynch & Bourrat, 2017; Tal, 2012). However, here,
SCM is helpful to clarify the correspondence between causal theories and
the identification of types of causal effects. When there is a direct cause
from G to E, the ANOVA heritability estimate is misleading because it
does not reflect the type of causal effect that can be derived from the
standard model. When there is a direct cause from E to G, or there is an
unobservable common cause for both G and E, ANOVA heritability is
misleading because the causal effects are overestimated via including
spurious influences.
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5.3. Extending the types of causal effects using SCM

Having investigated the presence of interaction and covariation using
SCM, in this section, we first consider an example that combines inter-
action and covariation. Then, we propose that SCM can help extend the
identification of causal effects of the genes on phenotype in more ways
than traditional heritability analysis.

Consider the example presented in Table 8.
In this example, both interaction and covariation occur. If we apply

ANOVA, we have:

VPðICÞ ¼ 40:7; VGðICÞ ¼ 16:9; VEðICÞ ¼ 2:7;

where the subscript “IC” stands for “interaction and covariation.”
The sum of VGðICÞ and VEðICÞ is smaller than VPðICÞ. To apply the heri-

tability equation anyway, we have H2
ðICÞ ¼ 0:415.

Without further information about the causal relationship between G
and E, there may be three possible causal structures, as shown in Fig. 4.
Build MðICÞa, MðICÞb, and MðICÞc, respectively. The causal effect of G on P
can be given by PðpjdoðgÞÞ. The results are given in Table 9.

We first calculate post-intervention phenotypic variances:

Vdoðg1Þ
PðICÞa ¼ 15:4; Vdoðg2Þ

PðICÞa ¼ 30:7; Vdoðg1Þ
PðICÞb;c ¼ 15:7; Vdoðg2Þ

PðICÞb;c ¼ 30:7:

Given VPðICÞ ¼ 40:7 , the reduced percentages of phenotypic variance
are:

ΔVdoðg1Þ
PðICÞa ¼ 0:622; ΔVdoðg2Þ

PðICÞa ¼ 0:246; ΔVdoðg1Þ
PðICÞb;c ¼ 0:514; ΔVdoðg2Þ

PðICÞb;c

¼ 0:246:

Following SCM, we can say that when there is a direct cause from G to
E, the causal effect of eliminating genotypic difference by fixing the
population at g1 on the reduction of phenotypic variance is 62.2%, and
that at g2 is 24.6%. When there is a direct cause from E to G or an un-
known common cause of G and E, the causal effect at g1 is 51.4%, and
that at g2 is 24.6%. Since none of these four estimates equals H2

ðICÞ
(0:415), the ANOVA heritability estimate is misleading in both interac-
tion and covariation situations.

Apart from phenotypic variance, more types of causal effect can be
derivedwithin SCM to extend our understanding of genetic causation. One
kind of causal query narrows down the scope of targeting specific in-
dividuals that live in particular environments. To takeMðICÞa as an example,
we can measure the causal effect for g2 individuals who live in e2:

PðICÞaðP ¼ 10jdoðg1Þ; e2 Þ ¼ 1:

It follows that, givenMðICÞa for a g2 individual who lives in e2, if it had
g1 instead, the probability of its height being 10 units is 1. Given that this
individual’s height is 20 units in the original data, we can predict that,
with everything else being unchanged, if it were mutated to have g1, its
height would decrease by 10 units.27 In this sense, we can say that its
with more genotypes.



Table 9
The causal effect of G on P in the interaction and covariation example presented in Table 8.

PðICÞaðpjdoðgÞÞ PðICÞb;cðpjdoðgÞÞ

doðg1Þ doðg2Þ doðg1Þ doðg2Þ
p PðpÞ p PðpÞ p PðpÞ p PðpÞ
5 (e1Þ 2=9 27 (e1Þ 3=11 5 (e1Þ 5=20 27 (e1Þ 5=20
10 (e2Þ 3=9 20 (e2Þ 4=11 10 (e2Þ 7=20 20 (e2Þ 7=20
15 (e3Þ 4=9 13 (e3Þ 4=11 15 (e3Þ 8=20 13 (e3Þ 8=20
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genotype determines 50% of its height.28 Although we can infer similar
conclusions from the collected data in Table 9, legitimate causal analysis
on the individual level is thought not to be straightforwardly available in
traditional heritability estimates.29 However, with the help of the SCM
framework, it is at least possible to ask causal questions on the individual
and population levels systematically.

In accordance with the analysis presented in the previous two sec-
tions, ANOVA heritability estimates in cases where there is substantial
interaction or covariation (or both) are misleading. To the extent that
they are identifiable in SCM, the causal effects of genes on a phenotype or
phenotypic variance or more specific causal claims can be provided.

6. Conclusions

This paper has clarified the disputes regarding heritability estimated
by ANOVA in two respects. First, there exist problems of defining the
exact causal meaning of heritability estimated under the assumptions of
the standard model. Applying the SCM framework helps clarify the type
of causal effect reflected by standard heritability and establishes that
standard heritability can be interpreted causally more robustly. Second,
there is a consensus that a causal interpretation of heritability is only
warranted where there is no interaction or covariation. Applying SCM
also produces results generally consistent with this consensus. Although
we agree that heritability by itself does not warrant a causal interpreta-
tion in the presence of interaction and covariation, we show that specific
types of causal effect (typically requiring more than a single number) can
be devised to establish genetic effects on the phenotypic variance. In
particular, we articulate the two assumptions under the standard model
with clear notations: the specific nonadditive structural function and the
causal graphs where independence is explicit. These notations provide
the formal language for connecting interaction and covariation to stan-
dard heritability. Thus, we can reach a coherent understanding of genetic
causation in cases with and without covariance and interaction.

Further, we show that SCM permits us to distinguish different types of
causal effect by answering individual-level questions regarding genetic
causation. This extension of the SCM application can supplement tradi-
tional heritability analysis by providing a more substantial causal analysis
of genetic causation. As mentioned briefly in Section 2, the debate about
the causal interpretation of heritability has been advanced to distinguish
two approaches: the variation-partitioning approach and the mechanism-
elucidating approach (Tabery, 2014). The former is a population-level
approach, while the latter is an individual-level one. It has been posited
that the variation-partitioning approach, of which heritability analysis is
one instance, has no implication for the mechanism-elucidating approach
(see Tabery, 2014, p. 99; Waters, 2007, p. 26). However, as our SCM
application shows, identifying the causal effect on phenotype variance
28 When reaction norms are plotted in the interventionistic sense rather than
the observational sense, they can provide similar causal analysis at the indi-
vidual level. However, reaction norms alone cannot provide causal analysis of
variance for a population with unequal frequent genotypes.
29 According to Lee and Chow (2013), the causal meaning of Fisher’s average
effect of individual alleles corresponds to this kind of causal analysis, but with
no formal language to distinguish causation from correlation.
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requires at hand specific structural functions, which represent invariant
causal mechanisms, indicating that the variation-partitioning approach
cannot be separated from the elucidating-mechanism approach. Empiri-
cally speaking, new technologies (e.g., genome-wide association study)
have located high numbers of DNA sequences as actual difference makers
that influence certain traits (Bourrat et al., 2017; Bourrat & Lu, 2017;
Frazer et al., 2009; Read & Sharma, 2021; Visscher et al., 2012), and
molecular biology continues to offer new information regarding the causal
mechanisms of trait production (McGue & Carey, 2017). With more
empirical data coming in, SCM will be a promising tool to assist with
integrating these two approaches.
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