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Abstract

Fitness is a central but notoriously vexing concept in evolutionary biology. The propen-

sity interpretation of fitness is often regarded as the least problematic account for

fitness. It ties an individual’s fitness to a probabilistic capacity to produce offspring. Fit-

ness has a clear causal role in evolutionary dynamics under this account. Nevertheless,

the propensity interpretation faces its share of problems. We discuss three of these.

We first show that a single scalar value is an incomplete summary of a propensity.

Second, we argue that the widespread method of “abstracting away” environmental

idiosyncrasies by averaging over reproductive output in different environments is

not a valid approach when environmental changes are irreversible. Third, we point

out that expanding the range of applicability for fitness measures by averaging over

more environments or longer time scales (so as to ensure environmental reversibility)

reduces one’s ability to distinguish selectively relevant differences among individuals

because of mutation and eco-evolutionary feedbacks. This series of problems leads

us to conclude that a general value of fitness that is both explanatory and predictive

cannot be attained. We advocate for the use of propensity-compatible methods, such

as adaptive dynamics, which can accommodate these difficulties.

KEYWORDS

eco-evolutionary feedbacks, environment, expected reproductive output, fitness, propensity

INTRODUCTION

The concept of fitness is central to evolutionary biology. Without

fitness differences between individuals in a population, there would be

neither natural selection nor adaptation (i.e., cumulative adaptive evo-

lution). One might accordingly think that evolutionary biologists have

settled on the definition for such a fundamental concept. If only that

were so. To this day, fitness is defined in different and even inconsistent

ways.[1–15] In light of this, it is not at all uncommon for prominent evo-

lutionary biologists to concede that “Unfortunately, fitness is difficult

to define more specifically so that it can be measured and understood

more clearly.”[16] Routine concessions like this suggest that little has

changed since Stephen Stearns proposed the following satirical defi-

nition: “Fitness: something that everyone understands but no one can

define precisely.”[17] Such quips and concessions belie a fundamental

challenge: If evolutionary theorists are entitled to deploy inconsistent

definitions and corresponding measures of fitness on pragmatic

grounds, then it becomes possible for two (or more) evolutionary biol-

ogists who observe an evolving population and have all the relevant

information about the system in hand to reach incompatible conclu-

sions about whether or towhat extent natural selection occurs.[18] We

find such a possibility deeply disconcerting and suspect that others

share this unease. In this paper, we provide a rationale for constraining

the meaning(s) of this concept by demonstrating intrinsic limitations

to its measurement. Fitness can prove a useful if not indispensable

concept when a target population and its environment meet several

nontrivial conditions; namely, that comparisons involving two or more

competing trait types (or individuals) cannot be made if there are irre-

versible changes in the environment. However, as we shall show, these

conditions can be satisfied only in much restricted spatio-temporal

BioEssays. 2021;43:2000157. © 2020Wiley Periodicals LLC 1 of 13wileyonlinelibrary.com/journal/bies

https://doi.org/10.1002/bies.202000157



2 of 13 DOULCIER ET AL.

partitions of the total (biotic and abiotic) environment. A consequence

is that fitness cannot be rightly regarded as a general measure of or

“forecast for” an organism’s long-term evolutionary success.

FITNESS IS NOT ACTUAL REPRODUCTIVE OUTPUT

Nearly everyone accepts that fitness is associated with a notion of

viability that eventuates in reproductive output. A correspondingly

intuitive proposal would then be that fitness is nothing more than

an individual’s actual reproductive output. If, however, one uses

actual reproductive output as a definition of fitness, natural selection

becomes an empirically unfalsifiable (tautological) concept.[1,19,20] The

fittest individuals in a population just happen to be those that survive

and produce the most offspring irrespective of the reasons for their

having done so. Consequently, greater fecundity would no longer be

reliable evidence upon which to infer the character states that are

better able tomeet ecological challenges to survival. As biologists have

long known,[21–23] an individual’s actual reproductive output should

provide evidence of, while not being an exhaustive definition for, its

fitness.

While the foregoing definition of fitness is easily dismissed, another

definition must stand in its place. Philosophers of biology have pro-

posed a definition that characterizes fitness as a “propensity” to sur-

vive and produce offspring.[24–29] Box 1 presents the philosophical

context in which the propensity interpretation arose as well as some

of the classical difficulties associated with it. On the propensity view,

two individuals with distinct character states or phenotypic variants

can have different probabilistic dispositions to produce certain num-

bers of offspring. An individual’s actual reproductive contribution is

evidence for the expected fecundity of its character state type, which

can be compared against extant competing character state types to

yield measures of relative or differential fitness. Assuming a uniform

environmental background, we can accordingly predict that any indi-

vidual bearing the character state with higher expected fecundity will

be favored by natural selection. We can also account for the fact that

individuals with the optimal character state sometimes fail to leave the

most offspring since there can always be highly localized environmen-

tal fluctuations that prevent an individual from realizing its capacity to

contribute the expectednumber of offspring for its trait type. Bywayof

a crude analogy, assume that vases havedifferent propensities to break

whendropped.Despite some types of vase being less fragile on average

than others, it would not be inconceivable or even all that surprising

if, from time to time, a single vase of a more fragile type did not break

when dropped on the floor.

An oft-touted virtue of the propensity interpretation of fitness is

that it happens to coincidewith a probabilistic account of reproductive

outputs. Fitness can accordingly be translated into and from a prob-

ability distribution (Figure 1). This welcome feature is often taken as

suggesting that there is nothing more to the definition of fitness than

the mathematical expectation, expressed as a scalar numerical value,

used to denote it.[26] But fitness as a propensity makes it a physical

property of an individual. It is supposed to be an explanatory (causal)

property of an individual organism rather than an individual type, albeit

one that does not admit of direct empirical access and must instead

be inferred via statistical means.1 At first pass, this certainly sounds

perplexing since fitness is a quintessentially relational property. The

degree of an organism’s “adaptedness to” or “fit for” a particular set of

environmental challenges is what enables it to survive and reproduce

in that type of environment. There is no such thing as fitness simpliciter.

Propensity theorists do not deny this. Their contention is that fitness

ascriptions need not make explicit reference to the specificities of

the environment.[27] The reference environment, on the propensity

interpretation, potentially consists of all possible background condi-

tions that could in principle be sampled by competing trait variants in

the long run. In the extreme, it could be construed as unchangeably

broad in scope, a “total” environment that presumably functions as a

prerequisite for genuine fitness differences that both explain a causal

history of competitive success and predict future representation. Any

further environmental specification would consequently generate a

special case of this all-encompassing reference environment.

Following the propensity interpretation of fitness, natural selection

is then the process that leads individuals with the “highest propen-

sity to leave offspring” (i.e., those that exemplify the trait type combi-

nations with the greatest expected fecundity) to increase in relative

frequency. When individuals with the highest propensity leave fewer

offspring than expected, individuals with the lowest propensity leave

more offspring than expected, or individuals with the same propensity

leave different numbers of offspring, the evolutionary process at work

is not natural selection but drift. Drift is typically derived on the basis

of departure fromexpected reproductive outputs (Box2b). Itmeasures

the extent to which evolutionary change (or the lack thereof) results

from so-called “accidents,” or the causal factors that filter extant heri-

table variation in a population indiscriminately.[63,65–69]

As definitions of fitness go, the propensity interpretation has been

widely acclaimed by philosophers of biology.Much of the support it has

drawn is due to its apparently seamless accommodation of the statis-

tics and probability theory that biologists deploy to measure fitness.

We now introduce three difficulties that arise directly from themathe-

matical methods onwhich the propensity interpretation depends.

PROBLEM 1: THE FAILURE OF REPRODUCTIVE
EXPECTANCY

Even though depicted as having an objective physical reality on the

classical propensity interpretation of probability,[70] propensities

differ from other quantities like mass or size in that there is no scale

or unit of measure for them. Propensities, in general, do not admit of

direct measurement. One can only access the outcomes of trials (e.g.,

the side on which a coin falls, whether the vase is broken, or the actual

reproductive output of an individual) as well as some of the physical

properties of the system generating them (e.g., the shape of the coin,

the composition of the vase, or the traits of the individual). Assigning

numerical values to a propensity, then, is necessarily an indirect infer-

ence. This inference depends on statistically combining sequences
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BOX1: Philosophical Context

Any analysis of fitness should account for two features of this concept. On one hand, fitness is invoked as a causal parameter in expla-

nations for why some character states or trait variants (and the organisms that exemplify them) are more prevalent than competing

character states or trait variants in a population. On the other hand, adequate measures of fitness should provide the means by which

to accurately predict the direction and magnitude of relative frequency changes due to natural selection. While these can be seen as

distinct projects (i.e, definitional analysis versus mathematical measurement),[30] philosophical discourse has nevertheless concentrated

onwhether an explication of the concept can satisfactorily capture both features.

Philosophical debate about fitness comes to the fore with criticisms lodged by Smart,[31] Manser,[32] and perhaps most of all, Popper.[19]

Popper, for instance, noted that if the fittest are just those that survive and reproduce in greater number, then evolutionary theory is

unfalsifiable because the central notion of fitness is tautological. If the “fittest” are defined as, for example, “those that produce the most

offspring,” then those that happen to produce the most offspring must always be deemed the fittest without regard for whether that

reproductive success is in fact due to their actually being better adapted to the challenges posed by the selective environment. Much the

same problem had already been laid bare by Scriven,[20] who, using an example involving identical twins who exhibit different viability,

shows why actual or realized fitness cannot suffice as a definition of fitness even if it is occasionally an adequate estimate of fitness.

Such difficulties prompted some, Williams[33] and Rosenberg[34–36] in particular, to argue that fitness is best construed as an undefined

theoretical primitive. At the time, however, most philosophers of biology found this suggestion wanting.

Brandon[24,37] and Beatty[26] recognized that any adequate explication of fitness had to be empirically sensitive to actual reproductive

output, which is, of course, the evidentiary basis for fitness estimates, without being exhausted by actual lifetime fecundity or viability.

Beatty’s andBrandon’s proposals shared two key components. Themetaphysical or ontological component depicts fitness as a probabilis-

tic dispositional property or “propensity.” Fitness is thereby an intrinsic and objective feature of a token organism, albeit one that typically

finds expression only in the organism’s relation to a specified selective environment. The epistemological component acknowledges

the mathematical means by which to measure this propensity. It is estimated via the statistical expectation for a character state, or a

probability weighted average over reproductive outcomes for a trait variant after a specified period.

This was seen by many as a major insight. It permitted individual organisms exhibiting a character state to deviate from the statistical

expectation for that type, while maintaining the capacity to explain why on average some character states did better than others in

a homogeneous selective environment. And it apparently provided firm causal and explanatory footing for fitness as a property of

individual organisms, the basic constituents of the populations whose dynamics are targeted by evolutionary explanation. Moreover, it

was faithful to the practice andmethods of biology.

Problems nevertheless arose for the propensity interpretation. The most pressing difficulties can be traced back to work by the theo-

reticians Thoday, Gillespie, Levins, and Lewontin.[38–43] With an appreciation of these contributions, Beatty, Brandon, and Sober[25,44,45]

each showed how assigning a single, unchanging numerical measure of fitness could generate an erroneous estimate for the fitness of

a character state and, therefore, relative fitness differences. Equating the expectation with arithmetic mean offspring contribution, for

example, clearly failed to take account of crucial information about intra- and intergenerational reproductive variance among competing

character states. Higher mathematical moments of statistical distributions (e.g., skew, kurtosis, etc.) pertaining to offspring output might

likewise generate inconsistencies. Nor could these inadequacies be casually dismissed asmeremathematical artefacts. Themathematical

models unambiguously represented biologically real and important phenomena; namely, (1) demographic stochasticity (i.e., within and

between generation differences in number or timing of offspring) and (2) environmental stochasticity (i.e., fluctuations in the biotic and

abiotic components of the selective environment).

Without sufficient means for measuring fitness, worries about the already contentious metaphysical status of fitness as a propensity

motivated some to dispense with the propensity interpretation altogether. By way of example, advocates of the so-called “(merely)

statistical interpretation” of fitness argue that fitness is predictive but neither causal nor explanatory.[46–51] On this view, fitness

estimates do not correspond to the intrinsic, inheritable causal basis of the success or failure of individuals. Fitness measures are instead

post hoc redescriptions over a virtually unlimited number of token causal events that influence survival and reproductive outcomes in

finite populations. Others who are no less sceptical of propensities, such as Abrams,[52–54] have proposed more moderate alternatives

that do not jettison the explanatory ambitions of the concept.

Despite several spirited rejoinders,[55,56] those who sought to defend a causal interpretation of fitness were somewhat at a loss until a

newmathematical foundation for the propensity interpretation was developed by Pence and Ramsey.[27] Working with Ramsey’s notion

of “Block fitness,”[28] they drew on a mathematical framework known as “adaptive dynamics.”[8,57] Adaptive dynamics is an extension

of evolutionary game theory to dynamic ecological scenarios that rely on feedbacks. Doing so enabled them to resolve several of the

outstanding difficulties associatedwith demographic and environmental stochasticity. The fitness function derived by Pence and Ramsey
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BOX1: Philosophical Context

generates a static scalar value of fitness (F) for any individual in a population by exploiting a massive multidimensional state space that

they call “Ω.” It consists of all the possible lineages to which a token organism, identified via its genotype, might give rise. This function

can preserve a static value of individual fitness in the face of many challenging and ubiquitous selective scenarios when certain nontrivial

provisions (see Sections 4 and 5) are met. For a more comprehensive overview and discussion of fitness in the philosophy of biology, see

Rosenberg and Bouchard.[15]

F IGURE 1 Propensity to produce offspring is a physical property of the relation between an individual and its environment. The physical
characteristics of an individual and its environment generate a propensity to produce offspring. Just as a force like weight (a physical relational
property of an object and the earth) is representedmathematically by a vector, a propensity can be representedmathematically by a probability
distribution, such as the probability of leaving x offspring during the lifetime of the individual. A probability distribution can be summarised by a
few key properties (such as its moments, i.e., means, variance, kurtosis), but this characterization is generally incomplete

of outcomes or insight into the physical structure of the system.[71]

Unfortunately, the exact relationship between the physical properties

of individuals and their respective reproductive outputs is currently

beyond the ken of biology, perhaps with the exception of what tran-

spires in the simplest of ecological and laboratory scenarios.[72] In

practice, fitness is thus often condemned to be inferred merely on the

basis of actual reproductive output.

A propensity is often represented by a single privileged number,

namely its expected value. The expected value of a probability dis-

tribution is defined as the average of outcome values weighted by

their probability. It is often preferred over other scalar descriptors

(e.g., median, maximum, variance, kurtosis, or a combination of these)

as a first approximation of an outcome distribution because of prop-

erties that follow directly from the axioms of probability theory. The

“law of large numbers” is particularly important in this regard. It states

that the average of independent samples from a distribution will con-

verge toward its expected value. This consequence is independent of

the philosophical justifications (epistemological vs. metaphysical) for

applying the axiomsof probability. The expected value correspondingly

plays a central role in both statistical inference (e.g., parameter estima-

tion) and projection.[73,74]

But identifying a propensity with its expected value can be just as

misleading as identifying fitness with realized reproductive output

(as discussed in the previous section). When considering simple

dichotomous events, identifying a propensity with its expected value

is not only intuitive but sensible. This is so because there is little loss

of information: the whole distribution can be perfectly described by a

single number. By way of illustration, the propensity interpretation of

the fairness of a coin correspondingly reduces this probabilistic quality

to a unique expected value: 0.5 (provided that we assign to each side

the numerical value 0 and 1). The expected outcome must be 0.5 in

order for a coin to be deemed fair. Contrast this with the propensity

interpretation of fairness for a six-sided die (Fig. 2). The fairness of

this die cannot, in similar fashion, be reduced to an expected value

of 3.5. For even a die that can fall on nothing other than one and six

yields this expected value. Such a die, however, is conventionally unfair

or “loaded.” Propensity and expected value can thus come apart. The

expected value only defines a probability distribution uniquely when

considering dichotomous outcomes or when the shape of the distri-

bution is constrained by a one-parameter model. Unfortunately for

the problem of fitness, an individual’s reproductive output—number of

offspring—is neither dichotomous nor constrained by a unique model.

Therefore, it cannot be reduced to a single number.

The foregoing discussion demonstrates that expected reproductive

output should not be hastily equated with fitness as a propensity to

reproduce. It can misleadingly conceal the complexity of a proba-

bility distribution.[25] An expectation may nevertheless be used as

a legitimate, meaningful, and simple summary of this propensity. In

the following section, we direct attention to cases in which such a

single-valued, scalar measure proves to be a reliable quantification of

individual reproductive propensity for causal explanations of evolu-

tionary dynamics. This will show that there is much worth retaining in

the propensity interpretation of fitness even if some of its ontological

commitments are deemed extravagant.
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F IGURE 2 The expected value does not capture the full propensity. In this example, both dice have the same expected outcome (Score S of
3.5), but only the blue one is conventionally considered fair, while the second is “loaded”. The die’s propensity to be fair cannot be summarized by a
single scalar value. Seemain text for details

F IGURE 3 Die-and-Coins Game. In this game, a player earns a point if the outcome of the coin toss matches their bet (heads or tails). The game
is playedwith two biased coins (red and blue). The coin actually used for play is determined by casting a die. This game is explicitly designed as an
analogy for a simple ecoevolutionary scenario wherein each player is a pepperedmothwith a given pigmentation (melanic or light). Amoth gains an
advantage (survival due to camouflage from predators) only if they land on similarly coloured bark. The forest is either overwhelmingly composed
of light or dark birch trees depending on an exogenous factor such as the presence of a factory. Seemain text for details

PROBLEM 2: ENVIRONMENTAL AVERAGING CAN
LIMIT PREDICTIVE EFFICACY

Fitness measures should facilitate predictions concerning the fate of

evolutionary systems, such as the frequency changes for individuals

of a given type. This is typically achieved by computing a projection of

the future population size from the long-term reproductive output of

individuals.[75] Yet, as demonstrated in the previous section, reducing a

probability distribution to a single scalar value only suffices in themost

simple dichotomous cases. Despite this difficulty, fitness is still often

deployed in the form of a single number, typically the arithmetic mean

of the exponential growth rate of a type in a population across possible

environments. The fittest type or individual is accordingly the onewith

the highest mean exponential growth rate. In Box 2a, we explain why

this value is mathematically equivalent to using the geometric mean

of expected reproductive output in discrete-time models like those

that feature in the philosophical literature.[44,45] But the (exponential)

growth rate used for projection must hold true for the period of time

under consideration if it is to render an accurate prediction. Problems

can arise if the environment changes over this time period in a way

that affects an individual’s long-term reproductive output.[76,77] One

way to sidestep this complication is by computing the exponential

growth rate in an idealized “average” environment (i.e., averaging over

all the environments encountered by the individuals, weighted by their

relative frequency). In this section, we show how irreversible changes

in the environment can preclude this approach.

To see why this is so, consider a simple game played with a die and

two coins (Figure 3). The two coins are biased in such a way that the
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F IGURE 4 Two variants of the die-and-coins game. Game 1: (a) The die is cast at the beginning of each round, so there are no irreversible
changes in the color of the tossed coin. (b) The future long term average score of a player (i.e., the limit for increasing n values of Yn, the average
score of a player at round n) does not depend on the specifics of the present. And the actual average score always converges toward its expected
value E. (c) Independent repeats of Game 1 can be predicted using the law of large numbers. For any given round n, the average outcome of many
independent repeats Yn(1), Yn(2), . . . converge toward the expected value En of the n-th round. Game 2: (d) The die is cast once at the beginning of
the game. There is an irreversible change in the colour of the tossed coin. (e) The future long term average score of a player depends on the
specifics of the present and does not converge toward its expected value E. (f) Independent repeats of Game 2, like with Game 1, can be predicted
using the law of large numbers. An interactive version of this figure is available assupplementarymaterial

red coin almost always falls heads while the blue coin falls predomi-

nantly tails. The die is used to decide which of the two coins will be

tossed. Each player is assigned a side of the coin at the beginning of

the game and earns a point each time the outcome of a toss matches

their respectively assigned side.Wewill accordingly refer to the “heads

player” (“tails player”) as the player who earns points whenever heads

(tails) is revealed.

This game is designed to parallel the classical evolutionary scenario

involving industrial melanism in peppered moths (see caption of

Figure 3).[78,79] Dark and light phenotypes are equivalent to heads and

tails players in this game, while the colour of the coin that is tossed

refers to the nature of the environment in which the moths live. A

lighter birch tree forest overwhelmingly favors the lightmoths that are

camouflaged on the light bark, just as the red coin gives an advantage

to the heads player. Each coin toss represents an event in the life of a

peppered moth that affects its reproductive output (e.g., encountering

a predator). Earning a point in the game should be interpreted as

reaping the benefit of a favourable event (e.g., evading a predator) .

The die represents exogenous factors that constrain the environment,

such as the presence or absence of a nearby factory.

Just as the lifetime reproductive output of an individual is the result

of many events, this game is one that is decided over many rounds. In

the following, let Xn be the score of the heads player at round n and let

Yn =
Xn
n

be theaverage scoreper round for this player. Theexperimen-

tal arrangement of the game (i.e. the physical characteristics of the die

and coins, along with the rules of play) generates a propensity for this

score (Yn), one that is captured by a probability distribution that maps

each possible score value of Yn to a specific probability value [the set of

P(Yn = y) for all values of y].

First, consider a set of rules (Game 1, a) in which the die is cast at

each round, leading to a potential change in the colour of the coin at

each round. For instance, assume that the red coin will be used when-

ever the die shows an even number, while the blue coin will be used

whenever the die shows an odd number. Provided that the die is fair

and that the coins are biased in equal but oppositeways (i.e., symmetri-

cally), the expected value of the average score per round for a player is

0.5. During a game, the outcome of a particular round n,Xn , can be con-

sidered an independent sample of a single probability distributionD. By

the law of large numbers, the long-term average score of the player, Yn,

converges toward E, the expected value of D, which is 0.5 (Figure 4b).

Note that this prediction is truenomatterwhat theoutcomeof the first

toss. From the biological standpoint, this fitness value is adequate no

matter what the initial state of the forest.

This may seem like a highly unrealistic setting, as the environment

at one time is independent from the environment at a previous time:

the color of bark in the forest may completely change between rounds.

Metaphorically, the environment has thus far been characterized as if

it had no memory of its prior state(s). A less artificial picture would

introduce historicity in the environment. Let us entertain this possi-

bility by considering another version of Game 1 in which the rounds

are not independent (not represented in Figure 4). This would be the

case if, instead of allowing the die to determine which coin is used at

each round, the coinusedbetween tworounds remains the sameunless

the result of a die roll is six, in which case the coin is changed (from

red to blue or vice versa). In such a situation, a unique scalar value

that accurately predicts the long-term average score irrespective of

the present state can be obtained, but only if coin-color change (i.e.,

reversibility) remains an open possibility (i.e., there is a non-zero prob-

ability of change). However, the law of large numbers alone no longer

suffices to justify this claim. It must be supplementedwith results from

Markov chain theory.2 The mathematical subtleties of this supplemen-

tary theory need not distract us from the crucial point here: if there
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are no irreversible changes in the environment, the average score per

round converges in time toward a unique value, no matter what the

specifics of the present (i.e., the first few tosses). This single value is the

average score of the player, weighted by the probability that a given

coin is used in the long term, a value that is in turn determined by the

actual bias of the die (i.e., given by the stationary distribution of the

Markov chain). It is independent of the initial conditions (i.e., whether

the game started with a blue or red coin). Provided one knows the rel-

ative probability of the forest being dark or light in the long run and

that the forest never changes irreversibly, one can accurately predict

the long term success of a moth regardless of the current state of the

forest.

Now, consider a new set of rules (Game 2, Figure 4d) under which

the die is cast just once before the first round. The color of the coin

never changes in this version of the game. This mirrors a scenario in

which there is irreversible change to the environment, as might be the

case if a light birch forest was forever darkened once a nearby factory

opened. Since the coin-color remains constant for the duration of an

entire game, the long-term average score for a given player cannot be

accurately predicted by averaging over the two exclusive sets of tri-

als involving only red coins or only blue coins.3 If the forest were to

become irremediably dark, averaging the success ofmoths over all pos-

sible environments (i.e., both dark and light forests)would likewise only

worsen the prediction by including information about potential rates of

success in unreachable light environments (Figure 4e). In this scenario,

no unique scalar value can discount the specifics of the present and

accurately predict the future. In Box 2b we explore the links between

Game 2 and the notion of drift.

Note here that if one were to repeat Game 2 several times (index-

ing the independent trials by i = 1, 2, . . . , like soY(1)
n , Y(2)

n ,…) and, then,

take an average of the average score per round computed at round n,

the value (the average of theY(i)
n for all values of i) would always con-

verge toward a value En as i increases (Figure 4C, 4f). Note also that

En converges toward E asn increases. This higher-order formof conver-

gence is an immediate consequence of the independence of the games

and hinges on the law of large numbers. But interpreting a biological

scenario as conforming to this type of convergence comeswith pitfalls.

Prominent among these is that doing so requires, as just mentioned,

assuming complete independence between repeats of a game and thus

the absence of irreversible changes in the environment. The previously

discussed limitations pertaining to the independent variant of Game 1

accordingly resurface.

The various die-and-coin games discussed above, as well as

their biological equivalents, lay bare an important caveat for any

attempt to predict the outcome of a dynamic process via a single

scalar value. Namely, these show why a fitness value must assume

the absence of irreversible changes in the environment (see Fig-

ure 4a–c) or else ensure its own inadequacy (see Figure 4d–f). Yet,

as we shall show in the next section, most environmental scenarios

appear to be approximately irreversible. This presents a daunting

challenge that threatens to undermine any general measure of

fitness.

PROBLEM 3: MUTATION-INDUCED TRADEOFFS
BETWEEN SCOPE AND RESOLUTION

The criticism lodged in the previous section should not be taken as

sounding the death knell for fitnessmeasures that average over all pos-

sible environments. It merely shows that under some conditions, such

as for irreversible environmental changes (Game2, Figure4d), accurate

prediction is unachievable. But if we assume that, at each time step, the

factory has a nonzero but very small chance of either closing if it was

present (i.e., lightening the dark trees) or appearing and opening if it

was absent (i.e., darkening the light trees), then the average growth rate

value over all possible environments considered constitutes a fitness

measure that holds true in the long run (Figure 5a).

There is, however, a major drawback with this approach, one that

stems from the fact that organisms can mutate. Recall that a desider-

atum for any scalar fitness measure is that it should both predict the

evolutionary dynamics of a population and permit comparing the suc-

cess of different individuals or phenotypes. Consider, again, the exam-

ple involving pepperedmoths in this context. Achieving as muchwould

require comparing the fitnesses of types in all possible environments

(i.e., abstracting away the color of the bark altogether), which in turn

presumes that we already know the respective reproductive outputs

of those types in each environment of interest (on light vs. dark bark).

Doing this in a way that maintains predictive accuracy compels us to

examine a timescale at which the colour of the bark is reversible and,

then, compute a weighted average of fitnesses over that timescale.

Such a situation is depicted in Figure 5a. In this figure, the timescale

under consideration ensures environmental reversibility. The factory

is present, then absent, and finally present again, while correspond-

ing changes to the colour of bark ensue. There is no mutation in this

scenario; surviving moths always breed true to form. Consequently, in

the long run, the average growth rate of each type of moth converges

toward a value that averages their growth rate on light and dark barks

weighted by the proportion of time spent on each color of bark (just as

Yn converges toward E in Game 1).

By explicit contrast, mutation between types is a possibility for the

scenario shown in Figure 5b. This scenario is otherwise identical to that

depicted in Figure 5a. Over a timescale at which both environments

are accessible, it is reasonable to assume that some descendants of

any focal individual would mutate so as to express the alternate phe-

notype. Even if we assume a high level of fidelity between generations

and stipulate that there is noextinction, the initial phenotypeof an indi-

vidual becomes increasingly irrelevant as the number of generations

considered increases. Assuming the possibility of mutation, the long-

term number of descendants becomes a function of all the phenotypes

that are potentially accessible via mutation within all of the potentially

accessible environments. Since the effects of both initial phenotype(s)

and initial environment(s) become diluted in the long run, any fitness

value obtained by this approach maintains its predictive integrity only

by glossing over the fitness differences between the competing types.

Consequently, in the long run, the average growth rates for both types

of moth converge toward the same value.
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BOX2: ArithmeticMean, GeometricMean, andDrift

This box discusses two topics related to the concept of fitness that have featured in the philosophical literature, namely the use of geo-

metric mean as opposed to arithmetic mean to compute fitness and the concept of drift.

a) Fitness: Geometric or Arithmetic mean?

As argued in Section 3, it is impossible to exhaust the information of a probability distribution more complex than a Bernoulli trial (i.e.,

with a binary outcome)with themean of a single scalar value.While it is impossible to capture the entirety of the distribution, it is possible

under someassumptions to accurately capture a relevant behaviour of the lineage spawnedby the individualwith a single scalar (provided

that descendants behave similarly to the ancestor). Often the long run growth rate of the logarithm of the population is used.[27,57]

Why use the growth rate of the log-population and not the growth rate of the population ? The reason is that populations do not grow

linearly but geometrically (or exponentially if modelled in continuous time). There is accordingly no way to define a growth rate of the

population as the slope of a line. Although rarely explicit, what most practitioners actually refer to when using expressions like “growth

rate of the population” is the growth rate of the log-population. This ambiguity also accounts for the occasional reference to the geometric

rather than arithmetic mean in the philosophical literature.[45]

A numerical example much like the one provided by Beatty and Finsen makes this point evident.[44] If an individual of a particular type

produces two offspring and each of these offspring produce four grand-offspring, this is equivalent to a situation inwhich individuals pro-

duce (2 × 4 )1∕2 =
√
8 = 2.83 offspring each generation, not

2+4

2
= 3offspring. This becomes obvious if one notes that the progenitor

has eight grand-offspring, as if the population was multiplied by the geometric mean
√
8 each generation (e.g.

√
8 ×

√
8 = 8) rather

than the arithmetic mean 3 (e.g. 3 × 3 = 9). Consequently, the proper way to average a geometric growth rate is to take the geometric

mean of the multiplicative terms. In log-space, however, the arithmetic mean gives the correct result: the log of the population increases

by
ln(2) + ln(4)

2
each generation (for a total increase of ln(8)).

This result should not be surprising since fitness computed using the arithmetic mean of the log-population increase is strictly equivalent

to computing it with the geometric mean of the population multiplicative terms in the sense that e
ln(2)+ln(4)

2 = (2 × 4)1∕2 =
√
8 by the

basic properties of the log function. This is always true for multiplicative processes regardless of their deterministic or stochastic nature:

the arithmetic mean of the exponential growth rate is equivalent to the geometric mean of the multiplicative growth rate. However, in

the absence of intergenerational fluctuation (i.e., when the population is multiplied bym every generation), the arithmetic and geometric

means are equal (
∏n

i=1m)
1∕n =

1

n

∑n
i=1m = m, so this distinction is unnecessary.

b) Drift and Expected Values

Drift is an elusive concept in evolutionary theory as it refers to different phenomena that have to dowith chance.[81] It has been proposed

as a causal process as well as an outcome.[82] A classical way to represent drift is to think about identical twins exhibiting the same trait

type, one of whom is struck by lightning while the other survives to produce offspring.[20,83] “Accidents” like this show that an individual’s

actual reproductive output can diverge from the expected output for its type. Such an instance of drift is an example of sampling drift.[84]

The random sampling of individuals induces a departure from the expected outcome. By way of analogy with Game 1, a case of sampling

drift would occur when a player experiences an unexpected sequence of heads or tails. Sampling drift has a particularly strong effect in

small populations, just as the effect of an individual struck by lightning in a population consisting of four individuals is more noticeable

than it would be were it in a population of one-thousand. It is largely for this reason that random drift is of prime importance in situations

known as population “bottlenecks” (e.g., founder’s effect) but typically negligible in large populations.

Game 2 also shows a deviation from expectation: the actual score of any player never converges on its expected score. Such an event is

random insofar as it depends on the roll of a fair die and can arguably be classified as a form of drift. However, the mechanism producing

drift here is qualitatively different from the sampling form of drift discussed above. The effect of the factory’s closure (initial roll of the

die) on the evolutionary trajectory of the moth variants is not negligible even in a large population. The fact that the die is rolled just

once explains why trajectories are unrepresentative of the die’s expectation. Moth population size is not explanatorily relevant here.

This source of random drift can nonetheless be compared to other sources of stochasticity by referring to the effective population size.

Givenadeviation fromexpectation stemming fromanunknown “drifty” process (e.g., variance in allele frequency), theeffectivepopulation

size represents the census size that a population adhering to the assumptions of a model in which there is only sampling drift (e.g., the

Wright-Fishermodel,[23] but othermodels could be used) would have if it were to display the same deviation from expectation. Increased

environmental noise usually results in reduced effective population size. But it is important to note that relying on effective population

size to characterize the level of drift in a population does not provide any insight into the mechanism(s) producing the deviations from

expectation.
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BOX2: ArithmeticMean, GeometricMean, andDrift

The foregoing implies that census population size and drift can be decoupled when attempting to give a mechanistic description of drift.

This point, with a few exceptions,[63,69,85] has too often beenmissed in the philosophical literature. It can also bemade from an individual

organismic perspective. Any source of environmental heterogeneity can increase the variance in a given type’s propensity to reproduce

by decreasing the chance that the individuals constituting the type realize the “lives” (reproductive outcomes) that they do. Grant Ramsey

calls this property of individuals “driftability.”[69]

F IGURE 5 Considering longer-term outcomes warrants averaging over more environments, but reduces resolution because of mutations.
Horizontal lines represent the lifespan of an individual and are colored according to their phenotype. Vertical lines represent reproduction. The
x-axis is time, the y-axis has no specific meaning other than preventing overlapping. Graphs on the right show the average growth rate computed
over a variable period of time, similarly to Yn in Fig. 4b and 4e. (a) No irreversible change in the environment, irreversible phenotype. The average
growth rates of each type converge toward unique values (horizontal lines) that reflect the average environment and are independent of the initial
environment. (b) No irreversible changes in the environment, no irreversible changes in phenotype (red circles represent backmutations that
change the phenotype of themoth). The average growth rates of both types converge toward a unique value (horizontal line) that reflects the
average environment and is independent of both the initial environment and the initial type

The foregoing example reveals a fundamental conceptual trade-off.

A broad-scope fitness measure—namely one that averages over

multiple environments—is predictive only at a timescale over which

all of these environments can be reached. This is because, in the long

run, the initial environment weighs less on the outcome compared to

the average reachable environment. But mutations change the type

of individuals in the long run, so the initial phenotype weighs less on

the outcome than the average phenotype. The phenotypic distribution

of descendants subsequently becomes indistinguishable in the long

run. If a measure of fitness is to be both predictive and capable of

distinguishing the evolutionary trajectories of types, then it must

consequently be defined at a timescale over which two conditions

hold: (1) All considered environments must be potentially accessible

and (2) the phenotypic states in question must not be inter-accessible

via mutation. If the first condition goes unmet, predictive efficacy

cannot be achieved. If the second condition is violated, resolution

at the timescale for which predictive efficacy is preserved becomes

so low that relative fitness differences between individuals or types

disappear. This trade-off between predictive accuracy and differential

fitness is especially pressing when attempting to define general fitness

values that average over a large diversity of environments and ignore

heredity, as some authors have proposed.[86]

The choice of a reference environment, including the relevant

timescale, is thus central to any definition of fitness that promises to
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inform its measurement.[87] It has been recognized in the literature

that both a “long” and “short” term concept of fitness could coexist

concurrently.[30,44,45,53] The examples introduced in previous sections

allow us to show precisely why this is so: a fitness-based projection of

long-termpopulation growth can bemade over any time-scale atwhich

the environment is in a steady state and in which there are no irre-

versible changes. While there may be many fitness-based measures, it

is crucial that these be constrained in twoways. First, as Game 2makes

clear, not just any arbitrarily identified reference environment will do;

environments that admit irreversible changes must be barred. Second,

restricting the set of permissible reference environments to those that

are steady-state reversible does not ensure that different phenotypes

will have different fitness.

STYMIED BY ECO-EVOLUTIONARY FEEDBACKS

A further problem faced by a general fitness value that could “aver-

age out/over” the specifics of particular environments involves the

existence of eco-evolutionary feedbacks. With regard to our exam-

ple of peppered moths, the problem would arise if we were to stip-

ulate that a factory’s functional status (open versus closed) causally

depends on the state of moths. However, examples of such feedback

can be found across biological systems. Consider a pristine rainfor-

est. The fitnesses of understory ferns with distinct character states

can be compared under the assumption that the forest is at a steady

state. The among-species comparisons (e.g., potential for competitive

exclusion) of population ecology likewise rely on this assumption. A

forest-clearing event would be an irreversible change in this context.

Its occurrencewould render projections based on the fitness estimates

obtained in an unperturbed environment inaccurate, perhaps show-

ing understory ferns “less fit” than some pioneer species. However, the

presence of pioneer species changes the environment (e.g., by soil for-

mation) and thus paves the way for the return of ferns during later

stages of succession. Adequately comparing the fitnesses of a pioneer

weed and an understory fern can only be done in a reference environ-

ment that encompassesperiodic clearings and regrowthof the forest at

a steady state. Examples such as this show how eco-evolutionary feed-

backs further refine the constraints discussed in section 4: the inex-

tricable coupling between changes in individuals and changes in their

environments in biological populations shapewhat can be considered a

set of inter-reachable environments (i.e. without irreversible changes).

Overall, one cannot ignore feedbacks between the “ecological dynam-

ics” that introduce new environments and the “evolutionary dynamics”

that introduce new types[88]

Eco-evolutionary feedbacks constrain the choice of the reference

environment because the set of accessible environments increases

when new types appear. At a macroevolutionary scale, this fact,

combined with resolution loss due to mutations, precludes a general

definition of fitness (i.e., in an all-encompassing reference environ-

ment). To underscore this point, imagine comparing fitness values for

mammals and cyanobacteria. Feedbacks require that this be done at a

timescale over which even atmospheric composition changes (e.g., the

cyanobacteria-driven oxygenation event 2.4 b.y.a.)[89] are reversible.

Aswith the toy example presented in Section 5 (Figure 5b), the average

value of fitness would be the same for any individual in the biosphere

because, in the long run, it would not make any difference whether

starting from a cyanobacterium or a mammal. The fitnesses of all

organisms across the domain of life (past, present, and future) become

indistinguishable.

Recent research shows that feedbacks between the evolutionary

dynamics of individuals and the ecological dynamics of their envi-

ronment are ubiquitous.[90–95] Recognizing as much obliges us to

deal with both environmental and phenotypic reversibility when

measuring fitness. The former type of reversibility might be seen as a

welcome feature insofar as it permits a general measure of fitness to

escape the trap posed by Game 2 (Figure 4e). But successfully accom-

modating environmental reversibility also introduces phenotypic

inter-accessibility. This latter type of reversibility presents a seemingly

insurmountable difficulty. For maintaining phenotypic accessibility in

the long term simply reintroduces the predicament due to mutation

discussed in Section 5 (Figure 5b), albeit this time in a somewhat less

contrived and more immediate manner. In the limit, eco-evolutionary

feedbacks guarantee that averaging over all possible environments

necessarily leads to an average fitness value that is one and the same

for all possible individuals.

ORGANISM-ENVIRONMENT INTERDEPENDENCIES:
CONSEQUENCES FOR FITNESS MEASURES

The propensity interpretation of fitness posits that fitness measures

the probabilistic capacity of an individual to produce offspring. This

commitment provides a concept of fitness that can be invoked in causal

explanations of evolutionary dynamics. Without it, fitness would be

an explanatorily impotent, post hoc redescription of the living world

(Section 2). However, the reproductive propensity of an individual

is difficult to access, whether by means of statistical measurements

on samples or via ecological knowledge of the system, and so fit-

ness measures necessarily remain nonexhaustive summaries of this

propensity (Section 3). The most salient difficulties for fitness on this

interpretation arise from the fact that propensities are fundamentally

relational properties of organism-environment pairings. In order to

progress fromdescriptive statements inmuchdelimited circumstances

to explanations that enable prediction over multiple environments or

individuals, reproductive outputs taken across different contexts must

be adequately combined. This is often done by computing (potentially

weighted) average reproductiveoutputs acrossmultiple environments.

Yet, as illustrated by the die-and-coins game presented in Figure 4,

averaging reproductive outputs is not always adequate andmay empty

the value obtained of its predictive power. In particular, the strategy

of averaging over all possible environments leads to erroneous results

if there are irreversible environmental changes (Section 4). One way to

alleviate this problem is to suppose that fitness measures only reflect

long-term reproductive success, which occurs on a time scale over

which all possible environments can be reached. However, this incurs
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a steep cost in resolution as the fitness values of similar, but different,

individuals become equal (Section 5). These difficulties thwart any

hope of computing a general scalar value of fitness that can distinguish

selectively nonneutral differences between individuals whilst retain-

ing its applicability as a predictor in any environment or evolutionary

scenario. Indeed, feedback between the evolutionary dynamics of indi-

viduals and the ecological dynamics of their environment ensures that,

in the limit, averaging over all possible environmentswould necessarily

lead to an average fitness value for all possible individuals (Section 6).

CONCLUSION AND OUTLOOK: A CASE FOR
ADAPTIVE DYNAMICS

Where do we go from here? None of what has been argued above

dooms the propensity interpretation of fitness. Nor should it be taken

as suggesting that general evolutionary mechanisms will forever

remain obscure. Our intention is to convey no more or less than the

following: if fitness is to retain the central conceptual role that it

currently plays in evolutionary theory—as both reflecting historical

success and enabling accurate prediction of future representation—

then its measurement must be restricted to an intermediate number

of inter-reachable environments and a timescale at which the blurring

effect ofmutation can be safely ignored. This proposal is not, of course,

novel.[27] In practice, these constraints are already taken into account

by the practitioners of adaptive dynamics. This family of methods

distinguishes the ecological timescale, at which a unique measure of

fitness (“invasion fitness”) can be safely computed, from an evolution-

ary timescale that admits of prediction only via combining step-wise or

“stringing together” the results ofmultiple ecological outcomes.[96–100]

Adaptive dynamics, along with its preferred measure of fitness, is no

silver bullet though. Just as classical irreversible thermodynamics

is but one of the available theoretical frameworks for dealing with

non-equilibrium thermodynamics,[101] so, too, is adaptive dynamics

but one framework with the capacity to sidestep the difficulties noted

in this paper. When the pivotal assumptions of adaptive dynamics

do not hold, it may very well be the case that no scalar measure of

fitness can accurately explain or predict the evolutionary dynamics. In

such cases, one may have to resort to a more precise summary of the

reproductive propensity, such as birth and death rates.[43,44,88,102]
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Notes
1 The notion of propensity is contentious in philosophy of probability.[58]

Some have tried to do away with it by proposing alternative interpreta-

tions of probabilities.[59–62] Several of these problems are inherited by

the propensity interpretation of fitness.[63,64] Addressing such issues is

beyond the scope of the present work.
2 For the mathematically inclined reader, this game can be described by a

discrete-time Markov chain with four states (blue heads, red heads, blue

tails, red tails). The limit average score per roundof a player (limit of Yn for

increasing n), is a linear combination of the sample average time spent in

each state. The ergodic theorem (see Theorem 7.12 in Privault[80]) states

that the sample average time spent in a given state converges toward the

unique stationary distribution (and thus is independent of the initial con-

ditions) if the chain is irreducible and positive recurrent (which implies

that there are no irreversible changes in state).
3 The Markov chain in such a case is not irreducible, so the ergodic the-

orem does not apply, and the long-term score does depend on the first

toss.
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