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Abstract

An evolutionary transition in individuality is de�ned as the emergence of higher-level

individuals from the interaction of lower-level ones during evolution. To occur, it requires

both a process of natural selection at the higher (collective) level and heritability of traits at

that level. Much of the literature on evolutionary transitions in individuality has focused on

collective-level selection with some authors calling for a similar work to be carried out with

respect to collective-level heritability. Starting from a model akin to Wilson's trait-group

model I provide such an analysis. I show �rst that when a collective trait is a linear function

of the lower (particle) level trait, collective-level heritability is a by-product of particle-level

heritability. It is equal to particle-level heritability, whether the particles interact randomly

or not to form collectives. Second, one e�ect of population structure is the reduction in

variance of o�spring collective-level character for a given parental collective. I argue that

this reduction in variance is one dimension of individuality. Third, when collective-level

characters are not linear functions of particle composition, collective-level heritability is not

only low but also depends highly on the frequency of the di�erent types of particles in

the global population. Finally, population structure, because it can reduce the variance in

o�spring collective-level character, permits to increase collective-level heritability of such

traits. In doing so, it also leads collective heritability to depend less on the frequencies of

di�erence type of particles than when population structure is low or absent.

Keywords. Heritability; Individuality; Evolutionary transitions in individuality; Interaction

1 Introduction

Over the past 10 years, one hot topic in the philosophy of biology has been the evolutionary

origins of individuals (Bouchard and Huneman 2013; Calcott and Sterelny 2011; Godfrey-Smith

2009; Lidgard and Nyhart 2017a; Okasha 2006). One primary reason for being enthusiastic about

this topic is that it concerns us all. As multicellular organisms we are the outcome of a number

of successful evolutionary transitions in individuality, with the latest two being a transition from

uni- to multicellular organisms, and a transition from pro- to eukaryotic cells. Making progress
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on the question of the origins of individuals1 promises a much deeper understanding of biology

and evolutionary processes than we currently have. Second, this topic is intimately linked to

one of the most important questions in evolutionary biology over the last 50 years, namely

the question of levels of selection (Godfrey-Smith 2009; Okasha 2006; Sober and Wilson 1998;

Wade 2016; Williams 1966). This question has been reinvigorated in the mid 90's following the

publication of Maynard-Smith and Szathmary The Major Transitions in Evolution (Maynard

Smith and Szathmary 1997) and the growing interest in evolutionary transitions in individuality

(Bouchard and Huneman 2013; Buss 1983; Buss 1987; Calcott and Sterelny 2011; Clarke 2016;

Godfrey-Smith 2009; Michod 1999).2

At the heart of evolutionary transitions in individuality thus lies the question of the levels

of selection. This question is indeed important. Without a deep understanding of the nature of

what appear to be shifts in selection regimes from one level to the other, our hope to understand

these transitions seems clearly impeded. But this question is not the only important one. To

see why, let us consider a classical way of dealing with the problem of evolutionary transition

in individuality, namely Lewontin's 1970 famous three conditions for evolution by natural selec-

tion.3 The conditions say that evolution by natural selection will occur in a population in which

there is 1) phenotypic variation, 2) this variation leads to di�erences in �tness, and 3) that this

variation is heritable.4 As stressed by Lewontin, these three conditions can be satis�ed at any

level of organization, so that units at di�erent levels of organisation can be `units of selection'.5

A natural move from there is to consider that there is scope for individuality at a given level

of organization when di�erences in �tness and heritability are much stronger at that level of

organization than at the lower level.6 Individuality will `emerge' at one level when an important

number of traits at that levels exhibit di�erences in �tness and heritability at that level. As we

will see below, this is by far not the only criterion that has been identi�ed in the litterature, but

it represents a sort of prerequisite for individuality.

We can see from Lewontin's conditions that if the question of the levels of selection is im-

portant, so is the question of levels of inheritance. It would thus seem that understanding how,

or in what sense, both selection and inheritance (and heritability, a population level measure

of inheritance) can shift from one level to the other are equally important questions to solve

the puzzle of the emergence of individuality in evolution. Yet, although this has been expressed

by several authors (e.g., Herron and Ratcli� 2017; Michod 1999; Okasha 2006), the question of

1Because I am interested in the evolutionary origins of individuality, by individuals I mean `evolutionary' or

`Darwinian' individuals. For other de�nitions of individuals and organisms see Gilbert et al. (2012), Godfrey-

Smith (2013), Lidgard and Nyhart (2017a), and Pepper and Herron (2008).
2For a recent update of the view developed in Maynard Smith and Szathmary (1997) see O'Malley and Powell

(2016) and Szathmary (2015)
3Ever Since Darwin (1859), a number of authors have proposed variations on these three conditions. For

reviews see Godfrey-Smith (2007) and Godfrey-Smith (2009). See Griesemer (2000) for an analysis of the dif-

ference between Lewontin's conditions and another account for evolution by natural selection put forward by

Maynard Smith (1987a).
4 Okasha (2006) and Godfrey-Smith (2007) both discuss these conditions and point out that in some cases the

three conditions will be satis�ed, yet no evolution is observed. This problem, they note, can be resolved if one

remarks that the conditions are valid only in cases when besides natural selection there is no other evolutionary

force (e.g., drift, mutation, or migration) that counteracts the e�ect of natural selection in the population.
5|Wimsatt (1981) rightly points out that the three conditions cannot distinguish whether a unit is a unit of

selection or whether is composed of units of selection
6Note that the conditions require nevertheless to be slightly amended to �t the speci�cities of evolutionary

transitions in individuality. For attempts to amend them see for instance Bourrat (2014), Bourrat (2015a), De

Monte and Rainey (2014), and Griesemer (2000).
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transitions of levels of selection has received much more attention that the question of transitions

of levels of heritability. The former question is undoubtedly an important one, and inasmuch

as it still remains unresolved, it deserves to be investigated. But surprisingly the question of

inheritance has received little attention, both in relation to the topic of the levels of selection7

and more particularly in regards to evolutionary transitions in individuality.

In this paper, I aim at �lling this gap. I provide an analysis of the evolution of heritability at

di�erent levels of organization in the context of evolutionary transitions in individuality. This

analysis is di�erent from both that of Okasha (2006) and Herron and Ratcli� (2017). The former

analyses heritability at di�erent levels of organization from the perspective of the Price equation

(and regression models derived from it) (Price 1970; Price 1972) and uses Damuth and Heisler's

1988 distinction between a conception of collective �tness, as the number of particle o�spring

produced, and a second conception of collective �tness as the number of o�spring collectives

produced. The former is often referred to as `multilevel selection 1' and the latter as `multilevel

selection 2.' For reasons I cannot develop here, I believe the distinctions to be problematic

in several respects (see Bourrat 2015b; Bourrat 2015c; Bourrat 2016). I will thus depart from

Okasha's analysis.

Herron and Ratcli� (2017) propose an analysis of heritability in the context of a evolutionary

transitions in individuality in which collective o�spring are genetic clones of parent collectives

since they have only one parent and in which there is environmental variation. I use a di�erent

model from that of Herron and Ratcli� in that I assume o�spring collectives can have multiple

parents and are not necessarily clones of their parent(s). Furthermore I will not (or only brie�y)

consider the e�ect environmental variation. Analyzing the e�ect of variation in the environment

at di�erent levels of organization on collective traits is important, but that will not be the

focus of my analysis. Rather my analysis will focus on the non-additive components of genetic

variance.

I will proceed in several steps. In Section 2, I present an additive model in which a collective

character is proportionate to the sum (or the average) of the characters of the particles that

compose it, and in which o�spring collectives have multiple parents. In this model collective

heritability is strictly equal to particle heritability. This leads me to consider that in such a

model whether heritability is positive at the collective level is not, in and of itself, what permits

to characterize the extent to which the collective level represents a `unit' of evolution or a level

evolutionary individuality. In Section 3, I argue that a low variance in average o�spring collective

character produced by a parental collective at least partly tracks intuitions about whether the

collective level exhibit individuality. Yet the variance in o�spring character for a given parent

is not captured by heritability. I then show that, fundamentally, a low variance in o�spring

collective character from a parental character, can be achieved by a positive assortment of the

o�spring particles produced by a collective. In Section 4, I move to collective characters that

are not linear relationships of particle level characters. Modifying slightly the model presented

in Section 2, I show that in a case of non-linear collective traits, not only is collective-level

heritability not as high as particle-level heritability, but it is highly context dependent when there

is no population structure. The notion of context dependence is notoriously ambiguous (Godfrey-

Smith 1992, Lloyd 1988, p. 69, Sober and Wilson 1994, p. 539). But context dependence in this

article I will mean independent from the particles-types frequencies in the global population.

7For an exception see the debate between Maynard smith and Sober (Maynard Smith 1987a; Maynard Smith

1987b; Sober 1987) and an analysis of the debate by Okasha (2006, pp. 185-189).
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Based on what has been argued in Section 3, I show that for collective heritability to be higher

and less contextual dependent some population structure is required. The higher the population

structure, the higher and less context dependent collective-heritability. I conclude by stressing

the importance of moving the debate of evolutionary transitions in individuality to collective-

level non-linear traits.

2 Collective Heritability and Additivity

Suppose a population of in�nite size N made of haploid particles divided into an in�nite number

NC of collectives, each of which is composed of n particles. The list of symbols used in the rest

of the paper is reported in Table 1. Because I am not directly interested in the di�erence made

by selection in this article,8 I consider that all particles produce the same number of o�spring

particles at each generation. In other words, the particle character is neutral, so that each

particle i has a character zi which is independent from its �tness. I then assume that particles

reproduce asexually, perfectly (more on this assumption in a moment) and simultaneously in

discrete generations, and that particle and collective generations overlap perfectly. That is,

collectives cease to exist when particles cease to exist and are reformed simultaneously with the

o�spring particles being produced.

Let us now assume that a given collective k has a character Zk which is equal to the mean

particle character that compose it so that

Zk =
1

n

n∑
j=1

k

zk,j (1)

where zk,j is the character of particle j in collective k. We also assume that the character of

each particle is genetically determined by one single locus with two alleles A and a, which have

the respective frequencies p and q (with p+ q = 1) in the global population of particles and pk
and qk in the collective k (with pk + qk = 1). Since we assume that particles reproduce with

perfect �delity, we have

zk,j = pk,j (2)

where pk,j is the frequency of allele A at the single locus of particle j in collective k. If the allele

is A, we have pk,j = 1. If the allele is a, we have pk,j = 0. This is leads to

Zk =
1

n

n∑
j=1

k

zk,j = pk. (3)

This model is e�ectively similar to the classical trait-group model �rst proposed by Wilson

(Wilson 1975), but with no di�erence in �tness and no interaction between the types.

In this model, we can ask what the relationship between particle-level heritability (h2z) and

collective-level heritability (h2Z) is for traits z and Z respectively.9 Starting with h2z, using the

8Although see Section 5 in which I talk about the e�ect of collective heritability on adaptation.
9There are di�erent approaches for estimating heritability (Falconer and Mackay 1996, Chap. 10) as well a

number of problems associated with the notion of heritability (Bourrat 2015a; Bourrat and Lu n.d.; Bourrat

et al. 2017; Downes 2009; Godfrey-Smith 2007; Godfrey-Smith 2009; Jacquard 1983; Sarkar 1998; Sesardic 2005;

Tal 2009; Tal 2012). The relevant concept of heritability here is known as `narrow-sense heritability' (h2), which

is de�ned as the ratio of additive genetic variance, on total phenotypic variance (which can have an additive

genetic, a non-additive genetic and an environmental component).
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Table 1: List of symbols

Symbol Explanation

N Number of particles in the population

NC Number of collectives in the population

Nk′ Number of o�spring collectives produced by collective k

n Number of particles in each collective

nk number of particles in a given collective k's o�spring collective coming from k

zi Character of particle i

zk,j Character of particle j in collective k

zk,j,l Character of particle j of parental collective k sent to o�spring collective l

z
′
k,j,l Character of particle j's o�spring in collective k's o�spring l

z Average parental particle character

z′ Average o�sping particle character

z
′
i Average character of particle i's o�spring particles

Zk Character of colective k

Z
′
k Average character of collective k's o�spring collectives

Z0 Collective with phenotype Z = 0

Z1 Collective with phenotype Z = 1

Z
′
0 Average collective o�spring character of a collective with phenotype Z = 0

Z
′
1 Average collective o�spring character of a collective with phenotype Z = 1

p Frequency of allele A in the population of particles

q Frequency of allele a in the population of particles

pk Frequency of allele A in collective k

qk Frequency of allele a in collective k

pk,j Frequency of allele A in particle j of collective k

qk,j Frequency of allele a in particle j of collective k

popt Frequency of allele A in a collective for the collective character to be Z = 1,

when Z is a non-linear (piecewise-de�ned) function of z

h2
z (Narrow-sense) heritability of particle character

h2
Z (Narrow-sense) heritability of collective character

f Index of population structure

βop Regression coe�cient of average-o�spring character on parental character

5
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parent-o�spring regression approach to heritability (see Falconer and Mackay 1996, Chap. 10),

computing this heritability is quite straightforward. In the additive case, with asexual organisms,

particle-level heritability is expressed as

h2z =
Cov(z

′
i, zi)

Var(zi)
(4)

where z
′
i is the value of the average o�spring character of entity i, Cov( z

′
i, zi) is the covariance

between the average o�spring character (z
′
) and the parental character (z), and Var(zi) is the

variance of the parental character.

Since in our model, particles reproduce with perfect �delity and there is no e�ect of the

environment, we have

z
′
i = zi. (5)

Therefore, recognizing that the covariance of a variable with itself is the variance of this variable,

particle heritability can be rewritten as

h2z =
Cov(zi, zi)

Var(zi)
=

Var(zi)

Var(zi)
= 1. (6)

This result is not surprising: in the presence of variation in character, perfect inheritance of

this character between parent and o�spring without variation in the environment (or noise) is

expected to be associated with maximal heritability.

The assumption of perfect �delity in the context of measuring heritability might seem prob-

lematic to some. It would be problematic if my aim was to characterize the e�ect of variation

in the environment and noise at di�erent di�erent levels of organization. As mentionned earlier,

this is not my aim here. Indeed, part of my goal is to study the e�ect of non-linear genetic

interaction between particles in collectives on heritability at di�erent level of organization, as

will become clear in Section 4. For a similar approach to mine, in which the authors analyse the

heritability of `heterozygoty' in the context of diploid sexual species in which variation in the en-

vironment is considered see Nietlisbach et al. (2016). The environment and noise certainly have

some important e�ects on heritability at di�erent levels organization as shown by Herron and

Ratcli� (2017), but adding these components of variance would greatly complexify the analysis

provided here and would to some extent orthogonal to my argument.

Moving on to collective-trait heritability (h2Z), to be able to compute it, we �rst need to

express the relationship between parental character and average o�spring character. To do so,

I introduce the index f , which is an analog to Wright's F-statistics (Weir and Cockerham 1984;

Wright 1949), and measures population structure. Population structure f is conceived of here

independently from the collective size which is another indicator of population structure. When

there is no population structure under this second sense, then there is only one collective made

of all the particles of the population. What f means here, is that if f = 0, all particles form

collectives (of a given size) randomly. That is, an o�spring particle of a parental collective has

no more chance to form an o�spring collective with another particle of the same collective than

with any other particle in the o�spring population of particles. In an in�nite population size, in

the absence of population structure, this leads to one and only one particle coming from a given

collective one to be transmitted to a given o�spring collective. If f > 0, an o�spring particle

of the parental collective has more chance to form an o�spring collective with another particle

from collective k than with another particle taken randomly from the o�spring population of
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particles�on average more than one particle is transmitted from a parental collective to each

of its o�spring collectives. Finally, when f = 1, o�spring collectives are composed solely of the

particle o�spring of the parent collective.

From there, for any collective k, we have

Z
′
k =

1

Nk′

Nk′∑
l=1

1− f
n

n∑
j=1

(
z
′
k,j,l + (1− n)z′

n

)
+
f

n

n∑
j=1

(z
′
k,j,l)

 (7)

where Z
′
k is the average o�spring collective character of collective k's o�spring, Nk′ is the number

of o�spring collectives produced by collective k, l is one given o�spring collective of collective

k, z
′
k,j,l is the character of particle j's o�spring in collective k's o�spring l, z′ is the average

o�spring particle character in the whole population. The index f can be rewritten as follows

f =
1

NC

NC∑
k=1

 1

Nk′

Nk′∑
l=1

nk − 1

n− 1

 (8)

where nk is the number of particles in o�spring collective l coming from parental collective k. I

will assume that parent collectives all contribute the same number of o�spring particles to each

of their o�spring collective so that we have

f =
nk − 1

n− 1
. (9)

From equations (8) and (9), we can see that if only one particle o�spring comes from a given

parental collective in each o�spring collective �which is what should be expected in a population

of in�nite size in which particles interact randomly�f is zero since nk−1 = 0. When all particles

in a given o�spring collective come from one given parent collective then nk = n, in which case

f = 1.

Since for any particle i we have z
′
i = zi, and because there is no di�erence in �tness between

the di�erent types of particles we have z′ = z, equation (7) can be rewritten as:

Z
′
k =

1− f
n

1

Nk′

Nk′∑
l=1

n∑
j=1

(
zk,j,l + (1− n)z

n

)
+
f

n

1

Nk′

Nk′∑
l=1

n∑
j=1

l
(zk,j,l). (10)

where zk,j,l is the character of the particle j of parental collective k sent to o�spring collective

l. Rearranging (10) leads to

Z
′
k =

1− f
n

1

n

1

Nk′

Nk′∑
l=1

n∑
j=1

(zk,j,l)+
(1− f)(1− n)

n

1

n

1

Nk′

Nk′∑
l=1

n∑
j=1

(z)+f
1

n

1

Nk′

Nk′∑
l=1

n∑
j=1

(zk,j,l) . (11)

Recognizing that 1
n

1
Nk′

Nk′∑
l=1

n∑
j=1

(zk,j,l) = Zk and 1
N

1
Nk′

Nk′∑
l=1

N∑
j=1

(z) = z, we can rearrange and

simplify Equation (11) into

Z
′
k =

(
1− f
n

+ f

)
Zk +

(1− f)(1− n)
n

z. (12)

Since Zk = pk and z = p, we can rewrite Equation (12) as

Z
′
k =

(
1− f
n

+ f

)
pk +

(1− f)(1− n)
n

p. (13)
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The �rst term of the right hand side of Equation (13) (
(
1−f
n + f

)
pk) expresses the part of the

collective character due to the structure of the population. The second term of the right hand

side ( (1−f)(1−n)n p) expresses the part of the character due to the random assortment of o�spring

particles in the formation of o�spring collectives.

Generalizing for our model the regression approach to heritability between one parent and

the average o�spring character in the case of sexual organisms (two parents) (Falconer and

Mackay 1996, Chap. 10), we have

h2Z =
n

nk

Cov(Z
′
k, Zk)

Var(Zk)
=

n

nk
βop (14)

where n
nk

represents the number of parental collectives one given o�spring collective has. The

number of collective parents a collective o�spring has depends on f . When f = 0, that is when

there is no population structure so that a parental collective sends only one particle per o�spring

collective, we have nk = 1; when f = 1, we have, that is when all the o�spring particles of a

collective are send to a single o�spring collective, we have nk = n.
Cov(Z

′
k,Zk)

Var(Zk)
represents the

slope of the best �tting line βop when performing a one-parent-collect-average-o�spring-collective

regression

If we now replace Z
′
k in Equation (14) by its expression obtained in Equation (13), we get

h2Z =
n

nk

Cov
(
(1−fn + f)pk +

(1−f)(1−n)
n p, pk

)
Var(pk)

. (15)

The consequences of the de�nition of covariance permit us to rewrite this equation as

h2Z =
n

nk

(1−fn + f) Cov(pk, pk) +
(1−f)(1−n)

n Cov(p, pk)

Var(pk)
. (16)

Since p is by assumption a constant, we can rewrite Equation (16) as

h2Z =
n

nk

(1−fn + f)Var(pk)

Var(pk)
(17)

where the second term has dropped out because the covariance between a variable and a constant

is nil. We can see that the term of the right hand side of Equation (17) is simply 1−f
N + f . This

leads to

h2Z =
n

nk

(
1− f
n

+ f

)
. (18)

Recognizing that 1−f
n + f is always equal to nk/n, we thus have h

2
Z = 1 for any structure in the

population and with collectives of any size.

The result obtained from Equation (18) shows us that in a case of collective-additive trait,

one can immediately derive its heritability at the collective level from the heritability of the

particle trait from which it originates. When the asexual particles reproduce perfectly, both h2z
and h2Z are equal to one.10

10Although I do not show it here, when there is a normally distributed environmental deviation (or noise)

of particle character centered around 0 that contributes additively to the collective character, the conclusion

becomes that collective heritability is equal to particle heritability, even though it is inferior to one in both cases.
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3 Collective Heritability and Collective Inheritance

The previous section demonstrated that whatever level assortment in the formation of o�spring

collectives between the o�spring particles produced by a collective (measured by f), particle

heritability and collective heritability of an additive-collective trait are always unity, so long as

the particles reproduce perfectly and there is no in�uence of the environment and no noise on

the particle trait. Given that collective-level heritability in one of the simplest possible model is

derived directly from heritability at the lower level, surely collective-level heritability cannot be

the sole criterion to consider when it comes to evaluate whether an entity is a unit of evolution

or an individual in its own rights when it comes to inheritance.11

I mentionned in the Introduction that heritability at a given level of organisation is a prereq-

uisite for individuality to exist at that level. Besides heritability, many criteria for individuality

have been proposed in the literature. For reviews see Clarke (2010), Clarke (2013), Lidgard

and Nyhart (2017b), and Pepper and Herron (2008). Godfrey-Smith (2009, Chap. 5, see also

Godfrey-Smith 2013), for instance, argues like others before him (e.g., Dawkins 1982; Huxley

1912; Maynard Smith and Szathmary 1997), that one criterion for individuality is the existence

of a bottleneck between collective generations. As recognized by Godfrey-Smith (2015) himself,

the bottleneck criterion can only account for fraternal evolutionary transitions in individuality,

that is, in transitions where the di�erent partners forming collectives are closely related phylo-

genetically (Queller 1997). In the case of egalitarian transitions, that is, transitions in which

the di�erent partners or particles of a collective have di�erent phylogenetic origins, extreme

bottlenecks (one single cell) cannot be achieved because there is no possibility for one partner

to `represent', that is to say reproduce on behalf of, the other(s). In the case of fraternal transi-

tions reproducing on behalf of other partners is readily achieve since all particles have the same

genetic material.

Besides the bottleneck criterion, and all other criteria proposed in the literature, I put

forward another proposal to measure the degree of individuality with respect to inheritance,

namely that the degree of individuality of a collective is inversely proportional to the variance in

o�spring-collective level characters produced by parental collective. I claim that, everything else

being equal, a collective with a given collective-level character producing o�spring with lower

variance in collective-level character, scores higher on individuality than a collective producing

o�spring with a higher variance in collective-level character. This claim is based on the intuition

that an individual is an entity that not only produces o�spring which on average resemble itself,

but also produces o�spring of which the character does not deviate too far from its character.

For instance a parental collective with a height of 50 units can produce produce two o�spring

collectives with height 1 and 99. One average there is a strong resemblance between the parent

and the o�spring (high heritability of height), but there is also a large deviation of o�spring from

the parental value. A high variation in o�spring collective character might be due, for instance,

to an unequal distribution of developmental resources between o�spring collectives or to a high

number of parents. The intuition underlying my proposal is further propelled by the idea often

11Recall that I assume that all particles produce the same number of o�spring at each generation in an in�nitely

large population, so that I keep both selection (i.e., di�erence in �tness associated with di�erences in phenotype)

and drift out of the picture here. That said, it should be noted that in as much as collective heritability depends

on the frequency of allele in the population and the number of o�spring collective produced as I have shown

in the previous section, any variation in these number, whether they are due to selection and/or drift will have

consequences on heritability at the collective level.
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associated with the view that individuals are entities with the ability of `like begetting like.'

The notion of `like begetting like' can be ambiguous. In fact, a high heritability might involve

entities producing new entities that are very di�erent from their parent (assuming there is only

one parent) but, on average the o�spring character has exactly the same value as the parental

one. The same expression might be understood in a di�erent way as the ability for a parent to

produce reliably o�spring that have a similar character value. In the former case, we thus have a

high heritability with a unreliable channel of transmission between parents and o�spring, while in

the latter case, not only is heritability high but the channel of transmission has a high �delity. It

is this second notion of `like begetting like' I have in mind to measure degrees of individuality.12.

Another way to make the same point is that in a population exhibiting genotypic variance, high

�delity between parent and o�srping necessarily implies high heritability, but the converse is

not true. The di�erence between these two notions has often been overlooked and, I believe,

has been the source of confusion in the literature. For an example of the type of confusion I am

talking about see the debate between Maynard Smith (1987; 1987) and Sober (1987), in which

they use notions of inheritance without being clear whether they refer to the �rst or second

sense I have distinguished.

As I show below, variation in the value of f can make important di�erences in the variance

in o�spring collective character produced by a given collective. As such, if one accepts a low

variance in o�spring character produced by an entity as a criterion for individuality, population

structure represents an �engine� for evolutionary transitions in individuality, as it permits to in-

crease collective-level heritability for non-additive characters. In section 5, I will brie�y mention

what population structure can consist of in evolutionary transitions in individuality.

Let us start from the model presented in the previous section. Recall from equation (3)

that, by assumption, the collective character is proportional to the number of particles with

allele A in the collective. For a given parental collective the variance in its o�spring collective

character can be conceptualized as the outcome of two variances. First the variance originating

from what this parental collective transmits to its o�spring. Second, the variance transmitted

to the o�spring from the rest of the particles produced by other parents.13 If we start from

a case in which there is no population structure, a given parental collective transmits one and

only one particle to each of its o�spring collectives;14 n − 1 o�spring particles of its o�spring

collectives come from other parental collectives. The allele of the transmitted particle depends

on the composition of the parental collective. Its variance is that of a binomial law for a single

trial and a probability pk of transmitting A (B ∼ (1, pk)). This variance is equal to pkqk. It is

maximal when pk is 1
2 . The distribution of the n− 1 particles coming from other collectives at

the parental generation follows a binomial law of for n−1 trials and a probability of transmitting

A equal to p (B ∼ (n− 1, p)). The variance for this distribution is equal to (n− 1)pq.

Thus, when there is no population structure, under our assumptions, we have a variance in

12I am not claiming that this measure is the sole that counts for individuality, for, like with any other measure

or criterion, it would lead to consider that some entities of which the individuality status is regarded by many as

equivalent to score very di�erently. For instance, asexual entities, if the measure of variance in o�spring character

was taken to be the only important, would score higher than sexual organisms. I am only claiming that a low

variance in o�spring character produced by an entity is one indicator for individuality. For a discussion on the

tension that exists in evolution between evolutionary factors that increase genetic heterogeneity and those that

increase homogeneity see Wright (1931, p. 142-147)
13We assume here that the parental contributions to a given o�spring collective are independent.
14Recall that this is because the population has an in�nite size.
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o�spring collective character Z
′
k for a given parent collective with character Zk equal to

Var(Z
′
k) = pkqk + (n− 1)pq (19)

We can see from Equation (19) two things. First, the value of this variance depends on the value

of pk and p. Second, unless pk and p are both very large or very small, when there is no structure

in the population, variance in collective-o�spring character for a given parental collective will

be high, and increases with n.

Suppose now that there is some structure in the population so that collectives transmit

more than one o�spring particle to their o�spring collective. In such a case, a collective parent

transmits nk particles to its o�spring and n − nk particles for each o�spring character come

from other collectives at the parental generation. The variance in the focal parental collective

contribution follows an hypergeometric distribution of nk draws in a collective of n particles

with a number pk of allele A.15 This variance is equal to nkpkqk
n−nk
n−1 . The variance in other

parental collectives contribution follows a binomial distribution of n−nk trials and a probability

p to transmit the allele A at each trial. We thus have

Var(Z
′
k) = nkpkqk

n− nk
n− 1

+ (n− nk)pq (20)

Assuming the extreme case where all the particles of a collective come from a single parent, we

have nk = n. Applying equation (20), we get Var(Z
′
k) = 0.16

We can now express Equation (20) in terms of f . From Equation (8) we can deduct that nk
is equal to

nk = f(n− 1) + 1 (21)

Replacing Equation (21) in Equation (20), we get

Var(Z
′
k) = (f(n− 1) + 1)pkqk

n− (f(n− 1) + 1)

n− 1
+ (n− (f(n− 1) + 1))pq. (22)

Equation (22) shows that the variance in collective o�spring character for a parent collective

depends both on the population structure (measured by f) and the size of collectives. The higher

the collective size, the higher the variance in o�spring collective character, keeping f constant.

The higher f , the lower the variance in o�spring collective, keeping n constant. Furthermore,

as f increases, the less Var(Z
′
k) depends on the value of pk and p. Finally, everything else being

equal, when pk < 0.5, the lower the value of pk the lower the variance in collective o�spring

trait, and when pk > 0.5, the higher the value of pk the lower the variance in collective o�spring

trait.

If one dimension of individuality is the ability for an entity to reliably transmit the value

of its character without too much variation, as I have suggested it is, then following my model,

evolutionary transitions in individuality must have required either or the combination of three

things. Namely, it must have required a population structure favoring a low number of particles

in a collective, a much stronger assortment between particles coming from a parental collective

than from any other collectives, and/or a low variance in parental collectives. These three factors

�or a combination of them�will lead parental collectives to produce o�spring collectives with

the same character value as their parent.

15For a di�erent between the binomial and hypergeometric distributions see Wroughton and Cole (2013).
16When nk = 1, Var becomes the same expression as Equation (19).

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2017. ; https://doi.org/10.1101/192443doi: bioRxiv preprint 

https://doi.org/10.1101/192443


It is interesting to note that in any real situation, everything else being equal, because

the number of particles produced by a given collective is �nite for a given parental collective,

the higher the collective character variance in its o�spring, the higher the number of o�spring

produced. This, of course excludes cases in which the parental collective genetically homogeneous

and/or unless f = 1 and assumes the number of o�spring particle transmitted by a parent is kept

�xed. This gives scope for a trade-o� between size and number of o�spring collectives (which is

modulated by f) when the collective trait is not neutral. I do not explore the consequences of

this here, but leave it for future work.17

4 Heritability of Non-additive Collective Traits

So far, my analysis has been restricted to collective additive traits. I have shown in Section 2

that when a collective trait is additive and particles reproduce perfectly, collective heritability

is always equal to particle heritability (h2z = h2Z = 1). In section 3, I have proposed that one

hallmark of individuality is the ability for an entity to produce o�spring which do not vary too

much in their character. In this section, I move on to heritability of non-linear collective traits,

that is collective traits that depend on the traits of the particles that compose the collective but

that do not follow a linear function. I show that the conclusion reached in Section 3 cannot be

extended to non-linear traits. I demonstrate that collective-level heritability for at least one sort

of non-linear traits is lower and more context-dependent than that of particle-level trait when

o�spring particles interact randomly to form o�spring collectives. I then show that one way to

increase collective-trait heritability is by the positive interaction of the o�spring particles in the

formation of collective o�spring (f > 0).

Non-linearity can be approached in di�erent ways. A classical way is to consider that the

character of a collective depends on a polynomial function of the characters of particles that

compose the collective. Here I use di�erent notion, namely one in which the collective character

is a piecewise-de�ned or hybrid function of particle character. With a piecewise-de�ned function,

the function's domain is separated into di�erent intervals over which a di�erent (sub)function

applies (Holtfrerich and Haughn 2006, chap. 1). To see what I mean by that, take again the

model presented in Section 2. This time, suppose that the character Z of a collective depends

non-linearly on the proportion of particles with the allele A in the following way. We will assume

here that Z is 1 when the proportion of particles with allele A within a collective has a certain

frequency Popt, and 0 when this proportion is di�erent from Popt. Z is thus de�ned as

Z =

0, if pk 6= popt

1, if pk = popt
.

In biological terms, this type of interaction could easily occur in egalitarian evolutionary transi-

tions in individuality, during which two or more partners can now perform a function that non

of them could perform before, such as, for instance the synthesis of a protein.

Collective heritability, in such cases, will depend on the di�erent values of the parameters of

the populations. To keep things simple, I present the cases in which collectives are made of two

17For model a based on the `wrinkly spreader' strain of Pseudomonas �uorescens (Hammerschmidt et al. 2014;

Rainey and Rainey 2003), in which a �tness trade-o� between collective viability and fecundity is considered see

Rainey and Kerr (2010). The sort of trade-o� I have in mind here is slightly di�erent as it concerns �delity of

transmission and fertility.
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Table 2: Genotype, phenotype and frequencies of two-particle collective genotypes at the Hardy-Weinberg

equilibrium

Genotype AA Aa aa

Phenotype 0 1 0

Frequency p2 2pq q2

Table 3: Frequencies of two-particle average o�spring-collective phenotype for each parental-collective

genotype at the Hardy-Weinberg equilibrium

Collective parental genotype

O�spring AA Aa aa

Genotype AA Aa AA Aa aa aA aa

Phenotype 0 1 0 1 0 1 0

Frequency p q 1
2p

1
2p+

1
2q

1
2q p q

Z′ q 1
2 p

and four particles.18 I start with the case of two-particle collectives.

When collectives are made of two particles, there exists three possible types of collectives, of

which the frequencies follow the Hardy-Weinberg equilibrium (see Table 2) when the formation

occurs from the random interaction of particles. Suppose now that only `heterogyzote' collectives

(Aa) have a phenotype Z = 1 while the two `homozygote' collectives have a phenotype Z = 0

(AA and aa).

To calculate the heritability of the collective character, we �rst need to know the average

o�spring collective character of the two possible collective phenotypes namely Z = 0 (Z0) and

Z = 1 (Z1). This requires �rst to compute the average o�spring-collective phenotype of the

three collective genotypes AA, Aa, and aa. These are reported in Table 3.

We then need to calculate the weighted average o�spring collective character of parental

collectives with Z = 0 which I symbolize as Z
′
0. This value depends on the parental genotype

frequencies of collectives AA and aa. From tables 2 and 3 we can compute the average o�spring

collective character for these genotypes. It is given by the following equation

Z
′
0 =

p2q

p2 + q2
+

q2p

p2 + q2
=

pq

p2 + q2
. (23)

The average o�spring collective character of parental collectives with Z = 1, that is Z
′
1 is found

18I do not present the case for three-particle collectives because it is more complex than both the two- and

four-particle cases. In fact, in the four-particle case some values of f can lead an equal number of particles

to be systematically transmitted from one collective parent to all of its o�spring collectives. In the case of

three-particles collective this is not possible. For example, although f = 1
2
for the three-particle case means

that, on average, a parental collective transmits two particles to its o�spring, this necessarily implies, under

our assumptions, that the collective sends half of the time one particle and half of the time all three particles

to a given o�spring collective. When there is variance in the parental contribution to o�spring collectives in

number of particles, estimating the collective heritability from regressions becomes more complex. In the case of

four-particle collectives, when f = 1
3
, which is the example will use in the next section, under our assumptions,

collectives always send two particles to their o�spring, so that the variance in contribution to o�spring collectives

in nil. Collectives are, in such cases, equal parent to all of their o�spring, which makes the estimation of collective

heritability easier.
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p = 0.9, βop = 0.39, h2Z = 0.78

Figure 1: Linear regressions of average o�spring-collective character on parental collective character for

the two-particle-collective model with no population structure

Table 4: genotype, phenotype and frequencies of four-particle parental collective-genotypes at the gen-

eralised Hardy-Weinberg equilibrium

Genotype AAAA AAAa AAaa Aaaa Aaaa

Phenotype 0 0 1 0 0

Frequency p4 4p3q 6p2q2 4pq3 q4

directly in Table 3 and is equal to

Z
′
1 =

1

2
. (24)

With these two results, we can now plot the the average o�spring character on parental

character and �nd the slope of the best �tting line using the standard least-square method.

These are reported in Figure 1 for three values of p: 0.25, 0.5, and 0.9.

As can be seen on Figure 1, when p = 1
2 , we have Z ′ = 1

2 for parental collectives with a

collective character Z = 0, and we also have Z ′ = 1
2 for parental collectives with a collective

character Z = 1. The slope of the regression line of average o�spring character is thus 0 and

consequently collective heritability, calculated from Equation (14) is nil. Another observation

is that the more distant p is from 1
2 , the larger collective heritability is. That said, it is always

inferior to particle-level heritability (h2z). This observation can easily be explained. In a popula-

tion in which most collectives are AA, these collectives become parent mostly of AA collectives

due to the lack of variation in the population (q � p), while Aa collectives become parents of

collectives that are half of the time identical to them and almost half of the time AA or aa

(Z = 0). Finally, aa collective, with the same phenotype as AA, produce almost systematically

o�spring that are di�erent from them, that is Aa. That said, they are so rare that they almost do

not count in the weighted average o�spring character with of collectives phenotype with Z = 1.

Thus, when p is very low or very high, the slope of the regression line tends toward 1
2 . Since

there are two collective parents per o�spring collective, collective heritability (which is twice the

slope of the regression line in this case) tends towards 1 but never reaches it.

Moving on to four particles cases, there are �ve di�erent possible collectives genotypes with

frequencies following the generalized Hardy-Weinberg equilibrium for two alleles. These are

reported in Table 4. The average o�spring-collective phenotype of the �ve possible collective

genotypes AAAA, AAAa, AAaa, Aaaa, and aaaa are reported in Table 5. I suppose in this
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Table 5: Frequencies of four-particle average o�spring-collective phenotype for each parental-collective

genotype with f = 0

Collective parental genotype

O�spring AAAA

Genotype AAAA AAAa AAaa AAAA

Phenotype 0 0 1 0

Frequency p3 3p2q 3pq2 q3

Z′ 3pq2

Collective parental genotype

O�spring AAAa

Genotype AAAA AAAa AAaa Aaaa aaaa

Phenotype 0 0 1 0 0

Frequency 3p3

4
9p2q
4 + p3

4
3pq(2q+1)

4
3q2

4
q3

4

Z′ 3pq(2q+1)
4

Collective parental genotype

O�spring AAaa

Genotype AAAA AAAa AAaa Aaaa aaaa

Phenotype 0 0 1 0 0

Frequency p3

2
p3

2 + 3p2q
2

3pq
2

q3

2 + 3pq2

2
q3

2

Z′ 3pq
2

Collective parental genotype

O�spring Aaaa

Genotype AAAA AAAa AAaa Aaaa aaaa

Phenotype 0 0 1 0 0

Frequency p3

4
3p2

4
3pq(2p+1)

4
9pq2

4 + q3

4
3q3

4

Z′ 3pq(2p+1)
4

Collective parental genotype

O�spring aaaa

Genotype AAAa AAaa Aaaa aaaaa

Phenotype 0 0 1 0

Frequency p3 3p2q 3pq2 q3

Z′ 3p2q
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p = .99, βop = 1.47 · 10−2, h2Z = 0.057

Figure 2: Linear regressions of average o�spring-collective character on parental collective character for

the four-particle-collective model with no population structure

example that the genotype AAaa leads to the collective phenotype 1 (popt =
1
2) while all the

other genotypes lead to the phenotype 0.

Using the same method as with the two-particle-collective case presented earlier, we can

calculate the weighted average o�spring collective character of parental collectives Z0. In this

cases it depends on parental genotype frequency of collectives AAAA, AAAa, AAaa and aaa.

The average o�spring collective character for these collectives can be calculated from Table 4

and Table 5. It is given by the following equation

Z
′
0 =

3p2q2(p3 + p2(2q + 1) + q2(2p+ 1) + q3)

1− 6q2p2
. (25)

As with the two-particle collective case presented earlier, Z
′
0 is found directly in Table 5 and is

equal to

Z
′
1 =

3pq

2
. (26)

With these two equations, following the same method as previously, we can now plot the

average o�spring character on parental character and �nd the slope of the best �tting line βop

using the least-square method. These are reported in Figure 2 for four values of p: 0.25, 0.5,

0.9, and 0.99.

Following Equation (14), collective-level heritability is computed as four times the regression

coe�cient (βop) of average o�spring collective-character on parental-collective character. The

trend observed with the four-particle case is similar to the one of the two-particle case. From

Figure 2 we can see that h2Z varies widely depending on the frequencies of the two alleles.

Collective heritability never reaches the same value as particle-trait heritability (which, under

our assumptions is always 1). It is zero when p = 0.5 and it is high when p = 0.25 (h2Z = 0.64)

tends towards 0 when p → 1 or p → 0 (not displayed on Figure 2). These results can readily

be explained if we consider �rst that when one of the two alleles is rare, it is very unlikely that

exactly two alleles of the same type interact to form a new collective at the next generation.

For that reason, most collectives have of phenotype equals to 0, whether the parental phenotype

is 0 or 1. Second when p = 1
2 , parental collective, whatever their phenotype, always produce,

on average, collective o�spring which all have the same collective-level character. This leads to

h2Z = 0. Finally, for values of p superior or inferior to 0.5 but not extremely superior or inferior
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(e.g., p = 0.25,p = 0.9), collectives with Z = 1 tend to produce collectives which have a higher

Z value on average than collectives with Z = 0. This is because under random assortment, and

with these frequencies of alleles, it is more probable that parental collectives AAaa produce an

o�spring collective with the genotype AAaa than is any other parental genotypes. This results

in a high collective heritability.

Although I do not show it here, the conclusions that in the absence of population structure

(f = 0), collective heritability 1) is always lower for non-linear traits that depend on the compo-

sition of collectives when compared to linear trait in the absence of population structure; and 2)

can be highly contextual dependent,19 can both be extended to larger collectives and di�erent

collective genotype-phenotype mappings.

5 Increasing Collective Heritability from Population Structure

Let us sum up what has been achieved so far. In section 2, I showed that collective heritability of a

trait that depends linearly on the trait of particles (which reproduce asexually and perfectly) that

composes it is always equal to the heritability of the particle trait in the population of particles

(which is equal to one), no matter what the population structure is. In Section 3, I argued that

one important aspect of individuality is the ability for an individual to produce o�spring that are

on average not too dissimilar from itself (Var(Zk
′) → 0). I showed that one way to reduce the

variance in o�spring collective-character, given a parental-collective phenotype, is to increase the

population structure (f > 0), so that the o�spring particles produced by a parental collective

have more chances to form an o�spring collective together than with particles produced by other

parental collectives, and consequently more chances to resemble their parental collective(s). In

Section 4, I showed that when it comes to non-linear traits, even in very simple structures of

two or four particles, the conclusion reached in Section 2, that collective-trait heritability is

the same as particle-trait heritability, does not hold anymore. Collective heritability is always

inferior to particle heritability and is highly context dependent, by which I mean varies widely

with di�erent frequencies of alleles in the population.

In this section I show that population structure has two e�ects on collectives. First, in so

far as population structure permits collectives to produce o�spring with a lower collective-trait

variance, it increases the heritability of non-linear collective traits. Second, it makes collective

heritability less dependent on the general-population frequencies of alleles. E�ectively, popula-

tion structure has the e�ect of `linearizing' non-linear collective traits by making the interaction

of particles produced by a given collective less context dependent than when there is no popu-

lation structure. In fact when f increases, because there is less shu�ing between the particles

produced by di�erent collectives, the variability of the context of formation of o�spring collec-

tives decreases. This makes the particles of a collective e�ectively increasingly behaving as a

single allele with a single e�ect.20

To see this, suppose we are dealing with our previous model in which collective with four-

particle composed of two particles with allele A and two particles with allele a leads to a collective

phenotype Z = 1, while all other genotypes leads to Z = 0.21 Suppose now that we have

19The more non-linear, the more context dependent.
20The notion of allele used here is the similar to the one presented in Lu and Bourrat (n.d.), that is following

a theoretical conception of the gene, not a molecular one.
21I do not present the two-particle case, but the conclusion reached with the four-particle case, can be extended

to collectives of any size.
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Table 6: Frequencies of four-particle average o�spring-collective phenotype for each parental-collective

genotype with f = 1
3

Collective parental genotype

O�spring AAAA AAAa

Genotype AAAA AAAa AAaa AAAA AAAa AAaa Aaaa

Phenotype 0 0 1 0 0 1 0

Frequency p2 2pq q2 p2

2 pq + p2

2 pq + q2

2
q2

2

Z′ q2 pq + q2

2

Collective parental genotype

O�spring AAaa

Genotype AAAA AAAa AAaa Aaaa aaaa

Phenotype 0 0 1 0 0

Frequency p2

6
pq
3 + 2p2

3
p2

6 + 4pq
3 + q2

6
pq
3 + 2q2

3
q2

6

Z′ p2

6 + 4pq
3 + q2

6

Collective parental genotype

O�spring Aaaa aaaa

Genotype AAAa AAaa Aaaa aaaa AAaa Aaaa aaaa

Phenotype 0 1 0 0 1 0 0

Frequency p2

2 pq + p2

2 pq + q2

2
q2

2 p2 2pq q2

Z′ pq + p2

2 p2

a population structure resulting in f = 1
3 . This means that o�spring collectives form from

two parents, which both contribute two particles to each of their collective o�spring. In this

situation, like with the case presented in the previous section, to calculate collective heritability

of character Z, we need �rst to know the average o�spring-collective character of a given parental

collective genotype. The collective character value (Z) for each possible collective genotype is

reported in Table 6.

To calculate the average o�spring-collective values reported in Table 6, I have used the

following method. I explain it for the parental-collective genotypeAAAa, but the same procedure

applies for all �ve possible collective genotypes. Collectives AAAa can transmit the combination

of alleles AA in 50% of cases and the combination of alleles Aa in the other 50%.22 Since the

alleles are at the (generalized) Hardy-Weinberg equilibrium, it is equivalent to choose the two

other alleles for the collective at random. This means that the combination AA will form

a AA-AA (AAAA)collective with probability p2, a AA-Aa (AAAa) collective with probability

2pq, and a AA-aa (AAaa) collective with probability q2. Similarly, the combination Aa will form

a Aa-AA (AAAa) collective with probability p2, a Aa-Aa (AAaa) collective with probability

2pq, and a Aa-aa (Aaaaa) collective with probability q2.

To have a direct point of comparison with the four-particle case when f = 0 discussed in

22In this model, if we assume that more than four o�spring particles are transmitted from a parental collective,

we consider �rst that two two-particle contribution are formed synchronically from the collective parental genotype

and transmitted to a o�spring collective. This operation is then repeated for the next four particles produced,

and so forth. An alternative model would be that all o�spring particles are produced at once, and then they

interact randomly to form pairs and are transmitted to the o�spring collectives. This latter model, which I do

not explore here, produces di�erent results from the one presented here.
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0

0.1

0.2

0.3

0.4

0.5

Z

Z
′

p = 0.25, βop = 6.27 · 10−2, h2Z = 0.125

p = 0.5, βop = 6.67 · 10−2, h2Z = 0.133

p = 0.9, βop = 9.76 · 10−2, h2Z = 0.195

p = 0.99, βop = 0.16, h2Z = 0.314

Figure 3: Linear regressions of average o�spring-collective character on parental collective character for

the four-particle-collective model with f = 1
3

Section 4, I assume that the four parental genotypes are at the generalized Hardy-Weinberg

equilibrium, that is at the frequencies presented in Table 4. From Table 4 and Table 6, we

can now calculate the weighted average o�spring collective character of parental collectives with

Z = 0. It is given by the following equation:

Z
′
0 =

p4q2 + 4p3q(pq + q2

2 ) + 4pq3(pq + p2

2 ) + q4p2

1− 6q2p2
. (27)

As with previous cases, Z
′
1 is found directly in Table 6 and is equal, in this particular case, to

Z
′
1 =

p2

6
+

4pq

3
+
q2

6
. (28)

From there, like with the case where f = 0, we can now compute the linear regression of

average o�spring character on parental character, as shown on Figure 3. If we compare these

results to the ones obtained in Figure 2, we can note that collective heritability varies less as

the frequency p varies and is overall higher than when there is no population structure, even

if for some particular values of p (e.g., p = 0.25) it is lower than when there is no population

structure.

Let us now move on to the same four-particle case but with f = 1, that is a case where

o�spring collective form from only from one parental collective. In such a case, as stated in

Section 3 for linear collective traits, the variance in the proportion of allele between a parental

collective and its o�spring is nil. Because of this, whether the case is one of linear or non-linear

collective character, the parental and o�spring collective character are identical. The regression

of average o�spring character on parental collective character is represented in Table 7.

In such a case the frequency of parental collective does not matter anymore to compute the

parent-o�spring regression. This is because the mean average o�spring character is 0 for all

collective genotypes with Z = 0 and 1 for all collective genotypes with Z = 1. This leads to the

regressions of average o�spring-collective character on parental collective character reported in

Figure 4 for the four frequencies of p, namely 0.25, 0.5, 0.9, and 0.99. When f = 1, collective

heritability of a non-linear collective trait is, following our assumptions, one, that is equal to

particle-level heritability.23

23I have shown this result here with a four-particle collective case, but this can be extended to populations of

collectives of any size
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Table 7: Frequencies of four-particle average o�spring-collective phenotype for each parental-collective

genotype with f = 1

Collective parental genotype

O�spring AAAA AAAa AAaa Aaaa aaaa

Genotype AAAA AAAa AAaa Aaaa aaaa

Phenotype 0 0 1 0 1

Frequency 1 1 1 1 1

Z′ 0 0 1 0 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Z

Z
′

p = .25, βop = 1, h2Z = 1

p = .5, βop = 1, h2Z = 1

p = .9, βop = 1, h2Z = 1

p = .99, βop = 1, h2Z = 1

Figure 4: Linear regression of average o�spring-collective character on parental collective character for

the four-particle collectives model with f = 1

With these di�erent results in place, we can now ask their signi�cance in the context of evo-

lutionary transitions in individuality. I showed that when o�spring particles interact randomly

to form o�spring collectives, collective traits that depend in a non-linear way on the propor-

tion of particles within collectives can have a very small heritability for certain proportions of

alleles in the general population. More importantly, variation in the frequency of alleles can

change drastically the value of collective level heritability. For instance, in our example with

four-particle collectives, collective heritability varied from 0 when the frequency of A is 0.5 in

the population, to heritability of around 0.36 when the frequency of p is 0.25 or 0.9, back to a

very low frequency when the frequency of p is 0.99.

Such a huge variation in value of heritability would make the long-term selection of a collective

trait di�cult. Imagine for instance a population of particles composed only of alleles A which

interact randomly to form collectives. Suppose now that the new variant (a) can emerge by

mutation with a relatively low frequency. To take our four-particle case as an example, even if

one collective was to exhibit two alleles a by chance and exhibit a collective phenotype collective

phenotype Z = 1, that would confer a huge selective advantage, a low heritability at this

frequency would mean that in spite of this huge advantage, its o�spring collective would almost

never tend to exhibit the same character.

What's more, suppose now, for the sake of the argument, that a proportion high enough

of allele a has arisen in the population, as a result of selection and/or drift, to a point where

heritability is high (say p = 0.25). At that point, any change in the frequency of one of the two

alleles, could easily lead to drastic change in heritability level. In a small population a change
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from p = 0.25 to p = 0.5 could readily happen. It would result in a collective heritability moving

from almost 0.36 to 0. Such a huge variation would also be an important obstacle for collective

level adaptation. In sum, when there is no population structure, in our example, having an

advantageous collective level character leads to a very unstable response to selection, which is

unfavorable for collective level adaptation to emerge.

If we now examine the e�ects of population structure, we can see that one of them is to

increase collective level heritability when the frequency of p is high or low. For instance when p

is 0.99, collective heritability moves from 0.06 when f = 0 to 0.314 when f = 1
3 . Furthermore,

collective heritability is now not lower than 0.12 when it could reach 0 with no structure. This

implies that the collective-level response to selection, when there is population structure, is

overall higher and less context dependent than when f = 0, that is whatever the frequency of

the particle types (besides 0) in the global population is, there would always be some response to

selection. From this, we can conclude that population structure acts as a bu�er against variation

in collective level heritability. When f = 1, which is a extreme case, we can see that there is

no context dependence of collective level heritability. The four particles are always transmitted

together. The non linear trait has e�ectively been `linearized' so that the four alleles of each

collective behave e�ectively as a single one. Another way to make this point is to say that

non-additive genetic component of variance are `converted' into additive genetic variance as f

increases. I take the notion of `conversion of non-additive genetic variance' Goodnight (1988)

(see also Wade 2016, p. 12; Mackay 2014) who have explored this phenomenon in the context

of epistasis in small populations. I have shown here its importance for evolutionary transitions

in individuality. When population structure exists or starts to increase, some traits that could

not be reliably transmitted from parents to o�spring at the collective level, so that no response

to selection can occur at that, starts to be reliably transmitted, and thus permits a response to

selection to occur.

Although selection is not the main focus of this paper, it seems probable that population

structure is a prerequisite for what one might call (advantageous) evolutionary innovations, that

is phenotypes requiring the non-linear interaction between two or more particles for which there is

no causal linear component of interaction, to be maintained over time. The collective non-linear

trait presented in this and the previous section satis�es this de�nition. Population structure

can in principle arise from di�erent causal processes whether they are intrinsic or extrinsic to

collectives. For instance, we could imagine two alleles at two di�erent loci co-evolving, one

conferring a direct evolutionary advantage by allowing the expression of a particular collective,

while the second trait permit the linearization of the trait at that level. Another scenario could

involve the existence a pleitropic e�ect. As with two alleles, the two e�ects would be the same,

but in this case one and the same allele would be responsible for both e�ects at once. A real case

satisfying the two alleles scenario might be the evolution of extracellular matrix from cell walls

permitting cells which were originally separating after mitosis to remain attached to one another

(probably due to some genetic mutations). Herron (2017, p. 70-72) shows that di�erent stages of

cellular attachments exist in the volvocine algae lineage with species in which extracellular matrix

exists having arguably higher degrees of individuality than species inwhich extracellular matrix

is not found. Given a mechanisms of control of number of cells per collective, the production

of an extracellular matrix by preventing cells to separate from one another permits the reliable

transmission of non-linear collective traits that would be impossible when cells once produced a

freely moving in the environment. Finally, another causal origin could be ecology itself. In some
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suitable conditions, ecology could provide the template for stable collective realized heritability

of collective-level traits to exist by preventing particles from di�erent parents to interact.

6 Conclusion

In this paper, I have clari�ed in what sense collective-level heritability plays an important role

in the levels of selection debate, and more particularly for evolutionary transitions in individu-

ality. The outcome of my analysis is that collective heritability of non-linear traits can only be

substantial and non-context dependent when the is a high level of population structure in the

formation of collectives. The importance of non-linear interactions has long been noted in the

multilevel selection literature (for a review see Wade 2016). At the same time, most multilevel

selection analysis focus on linear collective traits (e.g., Okasha 2006). I have shown here that the

implications of non-linear interaction for multilevel inheritance are equally important. The time

is ripe to move the literature on the emergence of individuality to non-linear traits. My model

has remained highly idealized with several unrealistic assumptions such as an in�nite population

size and same �tness for the two alleles. The next step in this project will be to build agent-based

simulations and explore these two parameters jointly with the other parameters discussed in this

article, as well as increase the number of loci and alleles responsible for the collective trait.
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